Time-Resolved X-Ray Brightness Measurements from Short-Pulse Laser-Irradiated Thin Foils

B. Eichman University of Rochester Laboratory for Laser Energetics 54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

The spectral brightness of high-intensity short-pulse laser-foil interactions has been measured near 2 keV

- 2-keV backlighting sources for cryogenic targets on OMEGA need high spectral brightness values to overcome the 400 mJ/ps/sr/eV/cm² self-emission
- Peak brightness and decay time measurements have been made of both Aluminum He_{α} and Ly_{α} for foils irradiated with laser energies up to 10 J, and intensities >10¹⁹ W/cm²
- The emission was also imaged allowing us to estimate a lower limit of the peak spectral brilliance (~17 mJ/ps/sr/eV/cm² for He_{α}, ~35 mJ/ps/sr/eV/cm² for Ly_{α})
- Data indicates that peak brightness will increase with laser energy and target dimensions can be optimized for longer decay times

W. Theobald, C. Stoeckl, C. Mileham, and T. C. Sangster

Laboratory for Laser Energetics University of Rochester

Motivation

Bright ~2-keV sources are required for backlighting imploding cryogenic shells on OMEGA

- DRACO/Spect3D simulations predict a self-emission of ~400 mJ/ps/sr/eV/cm² near 2 keV at peak compression
- To overcome the self-emission, high spectral brilliance required for good imaging contrast
- The backlighter source area must be comparable to shell size

Flag-mounted aluminum foil targets were used on the LLE Multi-Terawatt (MTW) system at intensities up to 4×10^{19} W/cm²

- High-contrast laser (~10¹⁰)
- $L_E = 1$ to 10 J
- τ_L = 0.7 to 10 ps
- Spot diameter ~5 μ m (50% L_E)
- Intensity ~ low 10^{18} to $4\times10^{19}\,W/cm^2$

A short-pulse, high-intensity laser interaction creates an expanding hot layer, thermal conduction, and bulk heating by refluxing fast electrons

^{*}P. M. Nilson et al., Phys. Plasmas 18, 056703 (2011).

^{**}B. T. V. Vu, A. Szoke, and O. L. Landen, Phys. Rev. Lett. <u>72</u>, 3823 (1994); Ditmere *et al.*, Phys. Rev. Lett. <u>77</u>, 498 (1996).

The time-integrated He_{α} emission is maximized for a specific lateral dimension

The x-ray emission was temporally and spectrally resolved

- Conically curved focusing* KAP crystal
- Spectral range (~ \pm 0.4 Å around He_{α} or Ly_{α})
- Spectral resolution $E/\Delta E \sim 750$
- Temporal resolution ~ 2 ps

UR

^{*}T. A. Hall, J. Phys. E, Sci. Instrum. <u>17</u>, 110 (1984).

Emission streaks were fitted to the convolution of a Gaussian and exponential decay

 Simultaneously recorded time-integrated data was used to calibrate HAMOS and determine spectral brightness

The He_{α} peak brightness increases with laser energy

Target dimensions can be chosen to optimize decay time while maintaining peak brightness

Spatially resolved He_{β} emission was measured

and ~35 mJ/ps/sr/eV/cm² for Ly α

*C. Stoeckl et al., Rev. Sci. Instrum. 83, 033107 (2012).

100 *µ*m

LLE

The spectral brightness of high-intensity short-pulse laser-foil interactions has been measured near 2 keV

- 2-keV backlighting sources for cryogenic targets on OMEGA need high spectral brightness values to overcome the 400 mJ/ps/sr/eV/cm² self-emission
- Peak brightness and decay time measurements have been made of both Aluminum He_{α} and Ly_{α} for foils irradiated with laser energies up to 10 J, and intensities >10¹⁹ W/cm²
- The emission was also imaged allowing us to estimate a lower limit of the peak spectral brilliance (~17 mJ/ps/sr/eV/cm² for He_{α}, ~35 mJ/ps/sr/eV/cm² for Ly_{α})
- Data indicates that peak brightness will increase with laser energy and target dimensions can be optimized for longer decay times

XTAL diagnostic measures time-integrated spectrally resolved emission

- Dual channel ~ 2 keV KAP crystal spectrograph
- Spectral range ~1.5 to 1.9 keV (~6.6 to 8.4 Å)
- Spectral resolution $E/\Delta E \sim 750$

UR

W. Theobald et al., Rev. Sci. Instrum. 80, 083501 (2009).

Emitted spectral energy increases with laser energy

