Optimization of NIF Polar-Drive Point Designs

T. J. B. Collins University of Rochester Laboratory for Laser Energetics 54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, Rl 29 October–2 November 2012

UR 🔌

The NIF Polar-Drive point design has been retuned to improve hydrodynamic stability

- The target implosion speed for the Polar Drive ignition design has been reduced, leading to a lower in-flight aspect ratio (IFAR) and less acceleration-phase instability
- Designs at a range of implosion speeds show the trade-off between target margin and IFAR
- The retuned ring pointing angles and energies have been further optimized in 2-D using *Telios*

J. A. Marozas, K. S. Anderson, V. N. Goncharov, P. W. McKenty, R. Betti, and S. Skupsky

> Laboratory for Laser Energetics University of Rochester

Polar-drive irradiation near the equator is at lower densities than at the pole, reducing laser coupling

- The laser beams in Polar Drive are repointed toward the equator to increase implosion uniformity
- Repointing beams leads to greater ray-path lengths, at a greater distance from the target, through lower densities $(n = n_{crit} \times \cos^2 \theta_{inc})$

Reduced coupling is mitigated by ice-layer shimming, tailored ring energies and polar-drive phase plates

- This design employs a 12- μm ice-layer shim to reduce the mass at the equator, offsetting the reduced laser coupling
- The PD equatorial phase plates direct energy toward the equator
- Multi-FM SSD beam smoothing and polarization smoothing will be used to reduce single-beam nonuniformities*

UR

A new suite of polar-drive ignition designs has lower implosion speeds and less acceleration-phase instability

- The implosion speed has been reduced by increasing the shell thickness
- The adiabat has also been reduced to preserve ignition margin
- The IFAR, which is scales as $V_{imp}^2/\langle \alpha \rangle^{3/5*}$, is reduced to 30, giving a less unstable implosion than previous polar-drive ignition designs**

^{*}J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998).

^{**}T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).

^{***}V. N. Goncharov, JO4.00001, this conference.

The decrease in implosion speed comes with a decrease in margin

- Margin $\approx (E_{kin} / E_{min}^{ign}) 1$, where E_{min} is the minimum energy needed for ignition
- $E_{\min} \sim \alpha^{1.88} V_{imp}^{-5.89} P^{-0.77} *$
- Decreasing the implosion speed from 380 to 350 $\mu \rm m/ns$ raises $E_{\rm min}^{\rm ign}$ by ~40%
- The reduced margin is reflected in a greater sensitivity to ice roughness

Telios is being used to optimize 2-D PD designs in multidimensional parameter space

- Telios is a C++ implementation of a Downhill Simplex method used to optimize target designs in 1-D and 2-D with respect to any function of the target properties, including gain, adiabat, IFAR, etc.
- The ring energies and pointing angles for $V_{imp} = 400 \ \mu m/ns$ design were optimized, increasing the gain without nonuniformities from 11 to 42:

 A separate optimization obtained a 40% increase in gain when the equatorial spot shape was varied to increase the energy in the secondary ellipse

Optimization with Telios indicates the robustness of the 370 $\mu\text{m/ns}$ design

- Telios was used to maximize the target gain for the 370 $\mu\text{m/ns}$ design while

UR

- holding the adiabat, pulse energy and IFAR constant
- varying the beam pointing angles and relative pulse energies
- Little variation in target gain was found, indicating a stability plateau with respect to the polar pointing angles and ring energies:

These designs will be re-optimized with non-local thermal transport and crossed-beam energy transfer

- A nonlocal thermal transport package using a modified Schurtz¹ algorithm has been implemented in DRACO and is being tested on the 370 $\mu \rm m/ns~design^2$
- Mitigation strategies, including multiple drive frequencies, are being explored using a new crossed-beam energy transfer model³
- NIF experiments will investigate direct-drive laser coupling and implosion symmetry using existing NIF optics and beam smoothing and warm targets early in FY13⁴

¹G. P. Schurtz, Ph. D. Nicolaï, and M. Busquet, Phys. Plasmas <u>7</u>, 4238 (2000).

²J. Delettrez, JO4.00013; D. Cao et al., CP8.00079, this conference.

³J. Marozas, UO5.00003, this conference.

⁴P. R. Radha, NI2.00006, this conference.

The NIF Polar-Drive point design has been retuned to improve hydrodynamic stability

 The target implosion speed for the Polar Drive ignition design has been reduced, leading to a lower in-flight aspect ratio (IFAR) and less acceleration-phase instability

- Designs at a range of implosion speeds show the trade-off between target margin and IFAR
- The retuned ring pointing angles and energies have been further optimized in 2-D using *Telios*