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Optimization of NIF Polar-Drive Point Designs
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Summary

The NIF Polar-Drive point design has been retuned  
to improve hydrodynamic stability

•	 The	target	implosion	speed	for	the	Polar	Drive	ignition	design	 
has been reduced, leading to a lower in-flight aspect ratio (IFAR)  
and less acceleration-phase instability

•	 Designs	at	a	range	of	implosion	speeds	show	the	trade-off	 
between target margin and IFAR

•	 The	retuned	ring	pointing	angles	and	energies	have	been	further	
optimized in 2-D using Telios

Summary
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Polar-drive irradiation near the equator is at lower 
densities than at the pole, reducing laser coupling
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•	 The	laser	beams	in	Polar	Drive	are	repointed	toward	the	equator	 
to increase implosion uniformity

•	 Repointing	beams	leads	to	greater	ray-path	lengths,	at	a	greater	distance	
from the target, through lower densities (n = ncrit × cos2iinc)
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Reduced coupling is mitigated by ice-layer shimming, 
tailored ring energies and polar-drive phase plates
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•	 This	design	employs	a	12-nm ice-layer shim to reduce the mass at the 
equator, offsetting the reduced laser coupling

•	 The	PD	equatorial	phase	plates	direct	energy	toward	the	equator

•	 Multi-FM	SSD	beam	smoothing	and	polarization	smoothing	will	be	used	
to reduce single-beam nonuniformities*

*J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010). 
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A new suite of polar-drive ignition designs has lower 
implosion speeds and less acceleration-phase instability
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•	 The	implosion	speed	has	been	reduced	by	increasing	the	shell	thickness	

•	 The	adiabat	has	also	been	reduced	to	preserve	ignition	margin

•	 The	IFAR,	which	is	scales	as	Vimp  /GaH3/5*, is reduced to 30, giving a less 
unstable implosion than previous polar-drive ignition designs**

***J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive  
 * (Springer-Verlag, New York, 1998).
***T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).
***V. N. Goncharov, JO4.00001, this conference. 

DT 
thickness 

(nm)
192 208 218 235

Vimp  
(nm/ns) 380 370 360 350

Minimum 
inflight a 1.68 1.55 1.47 1.40

1.5 MJ, IFAR = 30

Shot on OMEGA***
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The decrease in implosion speed  
comes with a decrease in margin
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•	 Margin	á (Ekin    /Emin) – 1, where 
Emin is the minimum energy  
needed for ignition

•	

•	 Decreasing	the	implosion	speed 
from 380 to 350 nm/ns raises 
Emin by ~40%

•	 The	reduced	margin	is	reflected 
in a greater sensitivity to ice 
roughness

*M. C. Herrmann, M. Tabak, and J. D. Lindl, Nucl. Fusion 41, 99 (2001).
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•	 Telios is a C++ implementation of a Downhill Simplex method used to 
optimize target designs in 1-D and 2-D with respect to any function  
of the target properties, including gain, adiabat, IFAR, etc.

•	 The	ring	energies	and	pointing	angles	for	Vimp = 400 nm/ns design were 
optimized, increasing the gain without nonuniformities from 11 to 42:

Telios is being used to optimize 2-D PD designs  
in multidimensional parameter space
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•	 A	separate	optimization	obtained	a	40%	increase	in	gain	when	the	equatorial	
spot shape was varied to increase the energy in the secondary ellipse

Optimizing the 400 nm/ns design Optimizing the equatorial spot shape
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Optimization with Telios indicates the robustness  
of the 370 nm/ns design
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•	 Telios was used to maximize the target gain for the 370 nm/ns design while 
 –   holding the adiabat, pulse energy and IFAR constant 
 –   varying the beam pointing angles and relative pulse energies

•	 Little	variation	in	target	gain	was	found,	indicating	a	stability	plateau	with	
respect to the polar pointing angles and ring energies:
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These designs will be re-optimized with non-local 
thermal transport and crossed-beam energy transfer
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•	 A	nonlocal	thermal	transport	package	using	a	modified	Schurtz1 
algorithm has been implemented in DRACO and is being tested  
on the 370 nm/ns design2

•	 Mitigation	strategies,	including	multiple	drive	frequencies,	are	 
being explored using a new crossed-beam energy transfer model3

•	 NIF	experiments	will	investigate	direct-drive	laser	coupling	and	
implosion symmetry using existing NIF optics and beam smoothing  
and warm targets early in FY134

1G. P. Schurtz, Ph. D. Nicolaï, and M. Busquet, Phys. Plasmas 7, 4238 (2000). 
2J. Delettrez, JO4.00013; D. Cao et al., CP8.00079, this conference.
3J. Marozas, UO5.00003, this conference.
4P. R. Radha, NI2.00006, this conference.
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Summary/Conclusions

The NIF Polar-Drive point design has been retuned  
to improve hydrodynamic stability

•	 The	target	implosion	speed	for	the	Polar	Drive	ignition	design	 
has been reduced, leading to a lower in-flight aspect ratio (IFAR)  
and less acceleration-phase instability

•	 Designs	at	a	range	of	implosion	speeds	show	the	trade-off	 
between target margin and IFAR

•	 The	retuned	ring	pointing	angles	and	energies	have	been	further	
optimized in 2-D using Telios


