The Evolution of Surface Defects Driven by Shock Waves

Drive

Shock reflectivity

Time

Space

T. R. Boehly
University of Rochester
Laboratory for Laser Energetics

54th Annual Meeting of the American Physical Society
Division of Plasma Physics
Providence, RI
29 October–2 November 2012
Summary

The evolution of submicron surface defects was observed in planar targets using optical diagnostics

- Shell uniformity is critical to performance of inertial confinement fusion (ICF) implosions*
- Defects on the outer surface alter shock-wave propagation, creating nonradial velocities that alter mass distribution
- The effects of 0.5- to 5-μm high × ~50-μm glue dots are readily observed
- Cryogenic and spherical experiments are planned

Will use this technique to validate simulations of debris on targets.

*T. C. Sangster, NI2.00002, this conference.
Collaborators

I. V. Igumenshev, V. N. Goncharov, T. C. Sangster, and D. D. Meyerhofer
Laboratory for Laser Energetics
University of Rochester

P. M. Celliers, D. G. Hicks, and J. Eggert
Lawrence Livermore National Laboratory
Shock waves are observed optically using time-resolved VISAR* and SOP**

* Velocity interferometer system for any reflector
** Streaked optical pyrometer

Shocks are reflective and emit light.
The effect of surface defects are observed using a probe beam reflected from the modulated shocks.
Shock-front curvature affects the VISAR intensity

Return beam can be defocused or steered

Local normal
A spherical surface defect produces shock modulations at both its center and edges.
Multiple shock waves can exacerbate the effects of surface defects

I. V. Igumenshev, NO4.00002, this conference.
A simple analysis using shock curvature predicts two features in reflected signal.
Simulations predict different behavior for multishock experiments

- Convergent (inner) and divergent (outer) features
- Second shock causes convergence of outer feature
Simulations show qualitative agreement with both single and multishock experiments.

Features caused by shock curvature

- Single shock
- Multiple shock

- Delayed breakout

- CH 40 µm

- ~5.0-µm glue dots
Reflection and self-emission both show effects of multiple shocks in ejected material.

Can observe effects of $<1\mu m$ high $\times \sim 50\mu m$ dots!
Summary/Conclusions

The evolution of submicron surface defects was observed in planar targets using optical diagnostics

- Shell uniformity is critical to performance of inertial confinement fusion (ICF) implosions*
- Defects on the outer surface alter shock-wave propagation, creating nonradial velocities that alter mass distribution
- The effects of 0.5- to 5-μm high × ~50-μm glue dots are readily observed
- Cryogenic and spherical experiments are planned

Will use this technique to validate simulations of debris on targets.

*T. C. Sangster, NI2.00002, this conference.