High-Z Ablator Targets for Direct-Drive Inertial Confinement Fusion

Two-plasmon decay in SiO₂, OMEGA at 10¹⁵ W/cm² 0.4 Without collisions $\frac{\gamma}{\omega_{pe}}(\times 10^3)$ 0.0 -0.4 With collisions -0.8 8.0 1.6 0.6 1.0 1.2 1.4 1.8 Time (ns)

R. Betti University of Rochester Laboratory for Laser Energetics

FSC

54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

LLE

High-Z ablators offer a possible solution for laser– plasma instabilities in direct-drive inertial confinement fusion (ICF)

- There is strong experimental and theoretical evidence that hot-electron production is greatly reduced in high-Z ablators such as Si, SiO₂
- High-Z ablator targets must be designed with optically thick layers to prevent radiation preheat of the fuel
- OMEGA implosion experiments require glass/silicon-coated CH shells. The two-plasmon decay (TPD) is below threshold for glass ablators on OMEGA
- Shock ignition targets for the NIF using glass/silicon ablators can be designed below the linear threshold during the assembly pulse

R. Nora, M. Lafon, J. F. Myatt, C. Ren, J. Li, R. Yan, A. V. Maximov, D. H. Froula, W. Seka, K. S. Anderson, R. Epstein, J. A. Delettrez, S. X. Hu, P. M. Nilson, and W. Theobald

> Laboratory for Laser Energetics University of Rochester

> > V. A. Smalyuk

Lawrence Livermore National Laboratory

High-Z reduction of TPD is seen in experiments and simulations

- Hard x-rays (HRX) reduced by more than 40× in glass with respect to plastic at 10¹⁵ W/cm^{2*}
- Confirmed:
 - on multiple materials in planar targets**
 - in particle-in-cell (PIC) simulations[†]
 - in quasilinear Zakharov model simulations[‡]

[‡]J. F. Myatt, TO5.00005, this conference.

^{*}V. A. Smalyuk et al., Phys. Rev. Lett. <u>104</u>, 165002 (2010).

^{**}D. H. Froula et al., "Direct-Drive Laser-Plasma Interactions Experiments," to be published in Plasma Physics and Controlled Fusion.

[†]R. Yan et al., Phys. Rev. Lett. <u>108</u>, 175002 (2012); J. Li, TO5.00003, this conference.

High laser absorption and 1-D areal density were measured in thick glass—shell implosion experiments

- Measured areal density = 140 to 150 mg/cm²
- Predicted areal density = 140 to 170 mg/cm²
- Areal density modulation $\Delta(\rho R)/\rho R \le 4\%$ (from four directions)

^{*}V. A. Smalyuk et al., Phys. Rev. Lett. <u>104</u>, 165002 (2010).

Implosion experiments with thick glass shells show highly truncated neutron rates

LL

A density jump at the D_2 -SiO₂ interface likely drives short-wavelength mixing leading to burn truncation **FSE**

The measured yield is consistent with the predictions of the free-fall model for mix-front penetration and clean hot-spot volume FSE

An assessment of the hydrodynamics of high-Z ablators requires hydro-equivalent implosions with the same gas-shell interface

FSC Warm implosions **Cryogenic implosions** SiO₂ CH SiO₂ CH CH CH DT DT D₂ gas D_2 gas DT gas **DT** gas

Hydro-equivalency \rightarrow same "payload" velocity and adiabat, and SiO₂-coated plastic for similar Rayleigh–Taylor (RT) growth at classical interface.

Compression experiments of warm OMEGA targets require thick-SiO₂ and a Si-doped CH layer to prevent radiation preheat of the CH payload

The TPD cannot be driven above the linear threshold in SiO₂-ablator targets on OMEGA at 10^{15} W/cm²

Because of the large scale length at quarter critical in NIF targets, designs below linear TPD threshold may be difficult to achieve

Shock-ignition, 700-kJ NIF SiO₂ targets can be designed to be almost fully below threshold during the assembly pulse

PIC simulations show that hot-electron production in Si is negligible even at the end of the assembly pulse FSC

*See J. Li et al., TO5.00003, this conference.

Summary/Conclusions

High-Z ablators offer a possible solution for laser– plasma instabilities in direct-drive inertial confinement fusion (ICF)

- There is strong experimental and theoretical evidence that hot-electron production is greatly reduced in high-Z ablators such as Si, SiO₂
- High-Z ablator targets must be designed with optically thick layers to prevent radiation preheat of the fuel
- OMEGA implosion experiments require glass/silicon-coated CH shells. The two-plasmon decay (TPD) is below threshold for glass ablators on OMEGA
- Shock ignition targets for the NIF using glass/silicon ablators can be designed below the linear threshold during the assembly pulse