Energetic-Electron Generation in Two-Plasmon-Decay Instabilities in Inertial Confinement Fusion

 electron (\(>50\) keV) phase space

\[t = 9.8 \text{ ps} \]

\[x (c/\omega_0) \]

\[P_x (m_e c) \]

Quarter-critical surface

53rd Annual Meeting of the American Physical Society Division of Plasma Physics
Salt Lake City, UT
14–18 November 2011

R. Yan
University of Rochester
Laboratory for Laser Energetics
Summary

Particle-in-cell (PIC) simulations up to 10 ps for OMEGA parameters show saturation of two-plasmon decay (TPD) and hot-electron generation

- In PIC simulations, significant laser absorption and hot-electron generation occur in the nonlinear stage
- Generation of hot electrons is correlated with new TPD modes in the lower-density region during the nonlinear stage
- Hot electrons are accelerated from the low-density region to the high-density region through a staged process
- The simulation with a single narrow beam shows reduction of hot-electron generation
Collaborators

C. Ren\(^1,2\), A. V. Maximov\(^1\), W. B. Mori\(^2\), Z. M. Sheng\(^3\), and F. S. Tsung\(^2\)

\(^1\)Laboratory for Laser Energetics and Dept. of Mechanical Engineering, University of Rochester
\(^2\)Dept. of Physics and Astronomy, University of Rochester
University of California, Los Angeles
\(^3\)Key Laboratory for Laser Plasmas (MoE) and Dept. of Physics
Shanghai Jiaotong University, China
PIC simulations of 10 ps with *OSIRIS* have been conducted for a range of OMEGA parameters

- Plane wave and Gaussian beams are used
- The simulation box is transversely periodic
- The open boundaries are used for fields and the thermal-reflecting boundaries are used for particles in the longitudinal direction
- Boundary diagnostics record the energy distribution of the particles going out of the thermal-reflecting boundaries

R. A. Fonseca et al., Lect. Notes Comp. Sci. 2331, 342 (2002).
The net particle-energy flux reaches a quasi-steady state after \(\sim 5 \) ps

- In the quasi-steady state
 - absorbed laser energy is balanced by the energy flux exiting the box
 - the particle and field energies in the simulation box are essentially constant

\[
I = 6 \times 10^{14} \text{ W/cm}^2 \\
L = 150 \mu\text{m} \\
T_e = 3 \text{ keV}
\]
Most hot electrons are produced in the nonlinear stage.

Electron >50-keV distribution in P_x–P_y space

Quasi-steady state
Saturation
Linear

$L = 150 \ \mu m$
$T_e = 3 \ \text{keV}$
$I = 6 \times 10^{14} \ \text{W/cm}^2$
The net energy flux exiting the high-density boundary includes significant contribution from the hot electrons.

Normalized instant net e^- energy flux at $t = 9.9$ ps

- 0 to 5 keV: -1.5%
- 5 to 10 keV: -0.4%
- 10 to 25 keV: 3.1%
- 25 to 50 keV: 4.5%
- 50 to 100 keV: 5.5%
- 100 to 150 keV: 4.3%
- 150 to 200 keV: 2.0%
- 200 to 250 keV: 0.6%
- 250 to 300 keV: 0.2%
- 300 to 350 keV: 0.11%
- 350 to 400 keV: 0.2%
- Over 400 keV: 0.2%
The hot electrons are generated through staged acceleration initiated by new TPD modes with low phase velocity in the nonlinear stage.
Important differences exist between the simulations and experiments

- Collision could suppress TPD at the marginal unstable laser intensities
- Speckles
 - in experiments, polarization smoothing changes laser polarization even within a single speckle, which needs 3-D modeling
 - simulation with a narrow beam has shown a reduced hot-electron generation

![Diagram showing E₂ field at t = 7.9 ps](image-url)
Simulation with a narrow beam showed a reduced hot-electron generation.

<table>
<thead>
<tr>
<th>Plane wave</th>
<th>I_{14max}</th>
<th>T (keV)/T_i (keV)</th>
<th>L</th>
<th>η^*</th>
<th>Total absorption</th>
<th>Hot (>50-keV) electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3/1.5</td>
<td>150</td>
<td></td>
<td>0.6</td>
<td>~0</td>
<td>~0</td>
</tr>
<tr>
<td>6</td>
<td>3/1.5</td>
<td>150</td>
<td></td>
<td>1.2</td>
<td>42%</td>
<td>17%</td>
</tr>
<tr>
<td>8</td>
<td>3/1.5</td>
<td>150</td>
<td></td>
<td>1.4</td>
<td>39%</td>
<td>15%</td>
</tr>
<tr>
<td>8 (d = 4 μm)</td>
<td>3/1.5</td>
<td>150</td>
<td></td>
<td>1.4</td>
<td>22%</td>
<td>5%</td>
</tr>
</tbody>
</table>

TPD threshold

$$\eta = \frac{(I_{14} \lambda_{\mu m} L_{\mu m} / T_{\text{keV}})}{82}$$

A. Simon et al., Phys. Fluids 26, 3107 (1983).
Particle-in-cell (PIC) simulations up to 10 ps for OMEGA parameters show saturation of two-plasmon decay (TPD) and hot-electron generation

- In PIC simulations, significant laser absorption and hot-electron generation occur in the nonlinear stage
- Generation of hot electrons is correlated with new TPD modes in the lower-density region during the nonlinear stage
- Hot electrons are accelerated from the low-density region to the high-density region through a staged process
- The simulation with a single narrow beam shows reduction of hot-electron generation
Ion-density fluctuations are driven by plasma waves propagating to lower-density regions.

- The region of ion-density fluctuations is spreading at the group velocity of plasma waves with the largest k.
- Ion fluctuations at the low-density region can induce new TPD modes locally.