Half-Integer Harmonic Images from Spherical Implosions Point Toward Localized, Multi-Beam Two-Plasmon Decay

Angle-of-incidence–limited irradiation nonuniformity in HEX and PENT locations are evident in $3\omega/2$ and $\omega/2$ images

W. Seka
University of Rochester
Laboratory for Laser Energetics

53rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Salt Lake City, UT
14–18 November 2011
Summary

Images of the $3\omega/2$ and $\omega/2$ emission from implosion experiments identify details of the two-plasmon-decay (TPD) processes

- $3\omega/2$ and $\omega/2$ images are consistent with driving common waves in HEX and PENT ports on OMEGA

- Comparison of on-target laser-light nonuniformity and $3\omega/2$ and $\omega/2$ images allows for inferences on TPD driven in localized areas

- $3\omega/2$ emission can potentially be used to explain observed discrepancies between scattered-light measurements and LILAC predictions
Collaborators

University of Rochester
Laboratory for Laser Energetics
At overlapped intensities of $<4 \times 10^{14}$ W/cm2 the LILAC predictions for scattered light are within 2% of the time-integrated measurements.

No measureable TPD ($3\omega/2$)
No HXRD signals
Time-resolved scattered-light spectra for high-intensity implosions are consistent with significant energy loss to TPD plasmons.
Multibeam TPD interaction imposes symmetry restrictions and favors HEX and PENT locations on OMEGA

Shot 62737, LILAC at $t = 2.2$ ns

OMEGA sphere at $n_c/5$ with beam locations

DDP = SG4
Assuming multibeam TPD, ray tracing with realistic plasma conditions is used to find TPD locations.
Theory limits multibeam TPD growth to a beam angle of ≤40°

OMEGA sphere at \(n_c/5 \) with beam locations

Maximum angle of incidence for multibeam TPD

Shot 62737, LILAC at \(t = 2.2 \) ns

DDP = SG4
HEX and PENT locations on OMEGA are naturally favored for multibeam TPD interaction

Shot 62737, LILAC at $t = 2.2$ ns

Maximum angle of incidence for multibeam TPD

OMEGA sphere at $n_c/5$

with beam locations

$DDP = SG4$
Limiting local beam angles to <35° reveals the irradiation nonuniformity for otherwise optimum illumination uniformity.

Overall drive (illumination) nonuniformity ~0.3%

Shot 62737, LILAC at t = 2.2 ns

OMEGA sphere at \(n_c/5 \)

with beam locations

DDP = SG4
Changing the target illumination can significantly change the location of likely TPD

Overall drive (illumination) nonuniformity degraded to 10%

Shot 62737, LILAC at $t = 2.2$ ns

OMEGA sphere at $n_c/5$
with beam locations

Laser

impact parameter

10^{14} W/cm^2

5.5

5.0

4.5

4.0

3.5

DDP = SG4
The structure observed in $3\omega/2$ images is consistent with TPD operating in well-localized regions.
The structure observed in $3\omega/2$ images is consistent with TPD operating in well-localized regions.
$\omega/2$ images are dominated by refraction and can be understood using ray tracing.

$LILAC$ simulation for shot 62737, 150 J/beam
Different illumination conditions lead to distinct changes in $\omega/2$ images.

Shot 62737, 150 J/beam
- Tangential focus

Shot 62845, 175 J/beam
- Narrow focus

Landau cutoff on target

E20434
Different illumination conditions lead to distinct changes in $\omega/2$ images.
Images of the $3\omega/2$ and $\omega/2$ emission from implosion experiments identify details of the two-plasmon-decay (TPD) processes

- $3\omega/2$ and $\omega/2$ images are consistent with driving common waves in HEX and PENT ports on OMEGA

- Comparison of on-target laser-light nonuniformity and $3\omega/2$ and $\omega/2$ images allows for inferences on TPD driven in localized areas

- $3\omega/2$ emission can potentially be used to explain observed discrepancies between scattered-light measurements and LILAC predictions