Numerical Evaluation of Subtangential Focusing in OMEGA Target Implosions

Beam 3
Center-beam ray
Crossed-beam energy transfer
Beam 2
Edge-beam ray
Narrow beam
Full beam
Beam 1

P. W. McKenty
University of Rochester
Laboratory for Laser Energetics

53rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Salt Lake City, UT
14–18 November 2011
Summary

Direct-drive phase plates require precise design to achieve the necessary imprint and laser–plasma interaction (LPI) mitigation

- Subtangential focusing leads to higher laser absorption
- Hydrodynamic instabilities are enhanced by reduced target illumination uniformity
- Bifocal phase plates are being examined to evaluate their applicability to OMEGA and NIF experimental platforms
Collaborators

Laboratory for Laser Energetics
University of Rochester
Laser absorption can be increased by implementing subtangential focusing

Positives
- Decreased refraction
- Reduced crossed-beam energy transfer

Negatives
- Enhanced overlap nonuniformity
- Reduced imprint smoothing
Subtangential-focus experiments are drawn from previous OMEGA capsule implosions.

Graphs:
- **Focus parameter (F/R) vs. Neutron yield:**
 - The graph shows a plot of neutron yield versus focus parameter (F/R).
 - Two focus parameters are highlighted: $F = 2R$ and $F = 8R$.
 - The neutron yield values range from 10^{10} to 10^{11}.
 - The data points are color-coded to indicate different diameters: >700-μm diam and 500- to 650-μm diam.

- **Calculated convergence ratio (at stagnation):**
 - The calculated convergence ratio is plotted against calculated convergence ratio (at stagnation).
 - The graph includes data points for 1-ns square, 23-kJ, D$_2$-filled shells, 1-THz, one-color-cycle SSD and PS targets.
 - The convergence ratios are labeled with diameters and pressures: 27 μm, 20 atm; 20 μm, 15 atm; 20 μm, 7 atm; and 20 μm, 3 atm.

Notes:
- The focus parameter $F = 2R$ and $F = 8R$ are shown on the graph.
- The calculated convergence ratio at stagnation is indicated for different pressures and diameters.
- The graph includes 37 shots at 20 μm, 15 atm.
Subtangential-focus experiments showed a relative yield improvement at tighter focus but 2× reduction in yield performance overall.
Defocused phase plates lead to higher levels of imprint nonuniformities and lower target performance.
DRACO simulations of an $F = 0.8$ OMEGA cryogenic implosion show degraded target performance

Density contours at peak burn

- $F = 1.0$
 - Yield over clean 30%
 - ρR over clean 92%

- $F = 0.8$
 - Yield over clean 21%
 - ρR over clean 70%

Geometric nonuniformity (% rms)

- $F = 0.8$
- $F = 1.0$

Effective number of overlapping beams

- $F = 0.8$
- $F = 1.0$
Single-focus phase plates can only straddle the desired regions of imprint and LPI control.
Bifocal phase plates, coupled with co-propagation of spliced pulses, can deliver two-step laser zoom

- Two-state phase modulation yields efficient energy transfer
- Sensitivity to focal-spot shape and profile is reduced
- Smaller focal spot decreases CBET for the main laser pulse
- Reduced phase gradients lower laser-damage probability
Two-step zooming can provide both imprint and LPI mitigation while maintaining target performance.
Summary/Conclusions

Direct-drive phase plates require precise design to achieve the necessary imprint and laser–plasma interaction (LPI) mitigation

- Subtangential focusing leads to higher laser absorption
- Hydrodynamic instabilities are enhanced by reduced target illumination uniformity
- Bifocal phase plates are being examined to evaluate their applicability to OMEGA and NIF experimental platforms