Neutron Spectra Measured with Time-of-Flight Detectors on the National Ignition Facility

Normalized spectrum dY/dE (fraction/MeV)

Alcove Spec20

- N110618
- N110914

Energy (MeV)

Normalized spectrum dY/dE

J. P. Knauer
University of Rochester
Laboratory for Laser Energetics

53rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Salt Lake City, UT
14–18 November 2011
Summary

High-quality data from NIF Spec20 detectors make it possible for neutron spectra to be calculated from a deconvolution

- Instrument response function (IRF) determined from in-situ measurements
- Spec20 detectors probe NIF implosions from two different lines-of-sight
- Neutron spectra are calculated with an error analysis built into the deconvolution
NIF nTOF development has been done by a large team of collaborators

University of Rochester
Laboratory for Laser Energetics

Lawrence Livermore National Laboratory

S. J. Padalino
State University of New York, Geneseo
Department of Physics and Astronomy

J. D. Kilkenny
General Atomics, Inc.
Several nTOF detectors are distributed around the NIF target chamber.

- nTOF-20 alcove (116-316)
- nTOF-4.5 DT-Lo (64-309)
- nTOF-4.5 DT-Hi (64-330)
- nTOF-3.9 DSF (64-275)
- nTOF-4.5 BT (64-253)
- nTOF-20 equatorial (90-174)

Neutron down scatter is measured along four lines-of-sight.
DSR measurements sample ρR of large-opening angle cones about the diagnostic direction.

Neutrons scattered from tritium and deuterium.

Instrument – (θ, ϕ)
- 3.9 m DSF – (64, 275)
- MRS – (77, 324)
- Alcove Spec20 – (116, 316)
- Equator Spec20 – (90, 174)

The average of all DSR measurements represents the average target ρR.
Instrument response functions (IRF’s) are constructed with a dynamic range of 10^3.

Instrument IRF is calculated from x-ray data, neutron propagation in scintillator calculated from MCNP, and exploding-pusher data.
Spec20 deconvolution uses a Wiener-filtered FFT technique

- Use signal-to-noise to determine number of points for FFT analysis (typically 4096)
- Use same number of points in data for leading and trailing noise windows
- FFT data, noise, and IRF
- Construct Wiener filter from power spectrum from IRF and noise using a Lagrangian multiplier
- Calculate deconvolved signal from inverse FFT of \((WF^* [\text{FFT(data)}/\text{FFT(IRF)}])\)
- Optimize Lagrangian multiplier by minimizing under- and overshoots in signal (subjective)
- Convert data to energy domain
- Calculate scalars DSF, \(T_{ion}\), yield
- Calculate energy spectrum with 50-keV resolution
Errors propagated throughout deconvolution analysis

- δ FFT from noise
- δ signal from δ FFT
- δ spectrum from δ signal
- σ scalars
Exploding-pusher neutron spectra agree but may show a difference between 1.5- and 2.1-mm shells.
Convolution of DT peak with IRF shows scattered neutrons
Down-scattered neutrons are clearly seen in deconvolved spectra
THD spectra show the TT neutrons in both alcove and equator Spec20’s.

TT neutrons seen for energies <9.3 MeV
Summary/Conclusions

High-quality data from NIF Spec20 detectors make it possible for neutron spectra to be calculated from a deconvolution.

- Instrument response function (IRF) determined from in-situ measurements
- Spec20 detectors probe NIF implosions from two different lines-of-sight
- Neutron spectra are calculated with an error analysis built into the deconvolution

Deconvolution of neutron spectra allow for a generalized DSR to be calculated.
Convolution of DT peak with IRF does not match layer shot data
Convolution of DT peak with IRF matches data from 1.6-mm exploding-pusher shell

Forward convolution of deconvolved model agrees with measured data.
Deconvolution of IRF enhances the signal to background in the DSR region

- Layered shot data shown as red line
- Exploding-pusher shot data shown as points; time > 14.9-ns data multiplied by 20 to show signal background
- $\text{DSR} \equiv Y_{10 \text{ to } 12}/Y_{13 \text{ to } 15}$
Two nTOF Spec20 detectors are installed on the NIF target chamber.

Design can accommodate an expansion chamber

Mounting holes on back of PMT mount

PMT 140
Gain 10^3

Equator installation 20 m from tcc
Alcove installation 22 m from tcc

Off-the-shelf metal bellows

Fused-silica windows

Photek PMT 240
Gain 10^6

Filter glass

4-in.-diam × 2-in.-thick aluminum cavity filled with xylene

nTOF Spec20 has been calibrated with DT and D$_2$ implosions on both OMEGA and the NIF.