Crossed-Beam Energy Transfer for Direct-Drive Implosions

I. V. Igumenshchev
University of Rochester
Laboratory for Laser Energetics

Simulations with CBET
Simulations without CBET
Measurements

Scattered-light fraction

$R_{\text{beam}} / R_{\text{target}}$

53rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Salt Lake City, UT
14–18 November 2011
Summary

Crossed-beam energy transfer (CBET) can reduce the performance of direct-drive ICF implosions

- CBET is observed in time-resolved reflected-light spectra as a suppression of red-shifted light during the main laser drive
- CBET extracts energy from the center-beam incoming light and transfers it to outgoing light, reducing the laser absorption and hydrodynamic efficiency
- CBET can be reduced
 - using beams smaller than the target diameter
 - using laser beams with two or more colors

Mitigation strategies are being tested on OMEGA.
Collaborators

Laboratory for Laser Energetics
University of Rochester

L. Divol and P. Michel
Lawrence Livermore National Laboratory
Outline

- Introduction
- Modeling CBET
- CBET in symmetric OMEGA implosions
- Mitigation of CBET: experiments and simulations
- Conclusions
Scaled-down implosion experiments on OMEGA are used to validate direct-drive NIF implosion designs.

Symmetric NIF ignition design*
(1-D gain = 50)

OMEGA targets

\[E = 1.5 \text{ MJ} \]

\[E = 20 \text{ kJ} \]

\[E = 16 \text{ kJ} \]

Experiments on OMEGA have been modeled using hydrodynamic codes *LILAC* and **DRACO**

- Radiation transport package
 - multi-group diffusion
- Equation-of-state package
 - *SESAME*
 - QEOS
- Laser absorption package
 - inverse bremsstrahlung
- Thermal transport package
 - flux-limited transport
 - nonlocal transport**

Measured bang time is late by ~200 ps, indicating reduced laser coupling.
Simulations overpredict the red-shifted scattered light

Time-resolved scattered-light spectra from a spherical implosion
Simulations overpredict the red-shifted scattered light

Time-resolved scattered-light spectra from a spherical implosion

- Blocking the central portion of the beam in the simulations reproduces the observed spectrum
CBET can be responsible for the discrepancy between experiments and simulations

- CBET involves electromagnetic (EM)-seeded, low-gain stimulated Brillouin scattering
- EM seed is provided by edge-beam light
- Center-beam light transfers some of its energy to outgoing light*
- The transferred light bypasses the highest absorption region near the critical surface*

CBET reduces laser absorption and hydrodynamic efficiency.**

Outline

• Introduction

• Modeling CBET

• CBET in symmetric OMEGA implosions

• Mitigation of CBET: experiments and simulations

• Conclusions
The CBET numerical algorithm considers pairwise interactions of light rays

\[
\frac{dI_i}{d\ell} = -\sum_j I_i \times L_{ij}^{-1}
\]

\[
L_{ij}^{-1} = I_j \times \frac{e^2 \lambda_L}{m^2 c^3} \frac{k_a^2}{\omega_{pe}^2} \frac{n_e/n_{cr}}{\sqrt{1 - n_e/n_{cr}}} Im \left[\frac{X_e (1 + X_i)}{1 + X_e + X_i} \right]
\]

\[
\omega_a = \omega_{\text{probe}} - \omega_{\text{pump}} \\
\bar{k}_a = \bar{k}_{\text{probe}} - \bar{k}_{\text{pump}} \left\{ \text{Three-wave matching condition} \right\}
\]

- The CBET model*† is implemented in LILAC absorption package assuming spherical symmetry**

An ion-acoustic wave saturation model is required to match the scattered-light power for intensities \(I \gtrsim 4 \times 10^{14} \text{ W/cm}^2 \)

- The amplitude of ion-acoustic waves is limited by clamping electron-density fluctuations

\[
\frac{dI_i}{d\ell} = \sum_j F(\omega_a, \tilde{k}_a, n_e, T_e, \ldots) \left(\frac{\delta n}{n_e} \right)_{ij} \times \sqrt{I_i I_j}
\]

\[
\left(\frac{\delta n}{n_e} \right)_{ij} = G(\omega_a, \tilde{k}_a, n_e, T_e, \ldots) \times \sqrt{I_i I_j}
\]

\[
\left(\frac{\delta n}{n_e} \right)_{ij} = \min \left\{ \left(\frac{\delta n}{n_e} \right)_{\text{clamp}}, \left(\frac{\delta n}{n_e} \right)_{ij} \right\}
\]

- The value of the clamping parameter \((\delta n/n_e)_{\text{clamp}}\) is determined by fitting the simulation results with the scattered-light measurements
 - for CH ablators: \((\delta n/n_e)_{\text{clamp}} \approx 0.1\%\)

P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009).
Outline

- Introduction
- Modeling CBET
- **CBET in symmetric OMEGA implosions**
- Mitigation of CBET: experiments and simulations
- Conclusions
Simulations including CBET agree well with scattered-light spectral measurements

Time-resolved scattered-light spectra from a spherical implosion

CBET extracts the energy from the center-beam incoming rays and transfers it to outgoing rays.
CBET reduces the absorption by \(~10\%\), but the implosion hydrodynamic efficiency is reduced by \(~20\%\).
Laser coupling at intensities up to $I \sim 6 \times 10^{14} \text{ W/cm}^2$ is accurately predicted by the CBET model.
Laser coupling at intensities up to $I \sim 6 \times 10^{14} \text{ W/cm}^2$ is accurately predicted by the CBET model.
Laser coupling at intensities up to $I \sim 6 \times 10^{14}$ W/cm2 is accurately predicted by the CBET model.

The accuracy of the CBET model was demonstrated using OMEGA implosions with different pulse shapes and targets.
High-intensity implosions ($I \sim 10^{15}$ W/cm2) show disagreements with the CBET model.

The missing scattered light may be caused by
 - two-plasmon-decay instability*
 - enhanced absorption in laser hot spots**

* W. Seka, U06.00005
** A. V. Maximov, UO6.00007
Outline

- Introduction
- Modeling CBET
- CBET in symmetric OMEGA implosions
- Mitigation of CBET: experiments and simulations
- Conclusions
CBET can be mitigated in symmetric direct-drive implosions by reducing the energy in beam edges.
CBET can be mitigated in symmetric direct-drive implosions by reducing the energy in beam edges.
CBET can be mitigated in symmetric direct-drive implosions by reducing the energy in beam edges.
CBET can be mitigated in symmetric direct-drive implosions by reducing the energy in beam edges.

Simulations suggested an optimum neutron yield can be achieved on OMEGA by reducing the laser beam to $R_{\text{beam}}/R_{\text{target}} \sim 0.8$.

* R_{beam} defined at 95% energy
Experiments* on OMEGA are investigating the optimum laser-beam diameter by balancing CBET with nonuniformities in low-adiabat implosions.

Fixed targets

Small phase plates

Beam profiles for different defocusing

<table>
<thead>
<tr>
<th>$R_{\text{beam}}/R_{\text{target}}$</th>
<th>Normalized intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>0.7</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>0.5</td>
<td>10^{-1}</td>
</tr>
</tbody>
</table>

Fixed beams

Standard SG4 phase plates

<table>
<thead>
<tr>
<th>$R_{\text{beam}}/R_{\text{target}}$</th>
<th>Beam profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97</td>
<td>860 μm</td>
</tr>
<tr>
<td>0.87</td>
<td>950 μm</td>
</tr>
<tr>
<td>0.83</td>
<td>1000 μm</td>
</tr>
</tbody>
</table>

$I \approx 4.5 \times 10^{14} \text{ W/cm}^2$

Not optimal single-beam uniformity

Optimal single-beam uniformity

D. Froula, UO6.00009
Experiments with small beams recover the red-shifted part of the spectrum.
The scattered light decreases rapidly with reduced beam size.

Less CBET

Simulations with CBET

Simulations without CBET

Measurements

Scattered-light fraction vs. $R_{\text{beam}}/R_{\text{target}}$
The increased absorption results in earlier bang time.

Bang time shifts ~20% earlier, indicating increasing hydro efficiency.
Higher implosion velocities are achieved with smaller beams.

Predicted effects of small beams are consistent with scattered-light, bang-time, and shell trajectory measurements.
Smaller beams introduce more nonuniformities caused by the laser-beam geometry

X-ray framing-camera images at the same target radius

- For beam radii < 70% to ~80% of the target radius, significant nonuniformities develop
- Neutron yields in these experiments are affected by single-beam nonuniformities
Experiments* on OMEGA are investigating the optimum laser-beam diameter by balancing CBET with nonuniformities in low-adiabat implosions.

Fixed beams

Standard SG4 phase plates

- $R_{\text{beam}}/R_{\text{target}} = 0.97$
- $R_{\text{beam}}/R_{\text{target}} = 0.87$
- $R_{\text{beam}}/R_{\text{target}} = 0.83$

*D. Froula, UO6.00009
Neutron yield sensitivity was addressed in experiments with varying target size.

Experiments demonstrate beneficial effects of reducing beam sizes.
CBET can be mitigated by using multiple-color laser beams

Separation of the wavelengths by $\Delta \lambda > \lambda_L(c_a/c) \sim 5 \text{ Å}$ (for a 351-nm laser) reduces the CBET by a factor of 2.
Future work

- Implementation of the CBET model in 2-D* to simulate polar-drive designs
- Using truncated phase plates to mitigate CBET
- Optimization of phase plates for polar drive when including CBET

*J. A. Marozas, PO8.00003
Crossed-beam energy transfer (CBET) can reduce the performance of direct-drive ICF implosions

- CBET is observed in time-resolved reflected-light spectra as a suppression of red-shifted light during the main laser drive.
- CBET extracts energy from the center-beam incoming light and transfers it to outgoing light, reducing the laser absorption and hydrodynamic efficiency.
- CBET can be reduced
 - using beams smaller than the target diameter
 - using laser beams with two or more colors

Mitigation strategies are being tested on OMEGA.