Measurements of D_2 Neutron Yield and Ion Temperature in DT Implosions on OMEGA

![Graph showing the DT/D$_2$ yield ratio versus DT ion temperature (keV) with Theoretical prediction, nTOF20-Spec6, and Charge-particle spectrometer data.]

- **Theoretical prediction**
- **nTOF20-Spec6**
- **Charge-particle spectrometer**

- **SiO$_2$**
- **Cryo**
- **CH**
- **CH**

- D:T = 58:42
- D:T = 64:36

V. Yu. Glebov
University of Rochester
Laboratory for Laser Energetics

53rd Annual Meeting of the American Physical Society
Division of Plasma Physics
Salt Lake City, UT
14–18 November 2011
The D_2 neutron yield and ion temperature in DT implosions have been measured on OMEGA

- A dedicated neutron time-of-flight (nTOF) detector and a collimated line of sight were developed on OMEGA to measure D_2 neutron yield and ion temperature in DT implosions

- The independently measured DT and D_2 ion temperatures are consistent with a single thermal source

- The experimentally measured ratio of DT to D_2 neutron yields is in good agreement with LILAC simulations of DT cryogenic implosions, and somewhat higher than the prediction of an ice-block model

Related talks: N06.00004, N13.00005
Collaborators

C. Stoeckl, T. C. Sangster, C. Forrest, J. P. Knauer, V. N. Goncharov, and P. B. Radha

Laboratory for Laser Energetics
University of Rochester

D. T. Casey and M. Gatu Johnson

Plasma Science and Fusion Center
Massachusetts Institute of Technology
The measurement of D_2 yield and T_i in DT implosions required a new detector and a collimated line of sight

- To record a small D_2 signal after a DT signal that is 350 to 1000× higher, the following requirements must be satisfied:
 - the nTOF detector has a gated PMT to eliminate the DT peak and avoid photomultiplier tube (PMT) saturation
 - the time separation between DT and D_2 peaks is larger than the PMT gate recovery time
 - low-afterglow scintillators like oxygenated xylene1, EJ-399-17 ("Liquid A")2, and bibenzyl crystal3 are used

1C. Stoeckl et al., Rev. Sci. Instrum 81, 10D302 (2010).
2www.eljentechnology.com
3N. Zaitseva et al., LLNL-JRNL-414904 (2009).
The nTOF20-Spec6 detector* filled with oxygenated xylene is being used for DT/D₂ ratio measurements

- Gated PMT 240 records the D₂ neutron signal
- Ungated PMT 140 records the DT neutron signal

The nTOF20-Spec6 detector was calibrated *in-situ* in D$_2$ shots on OMEGA with the same gate as in DT shots.
A typical scope trace from the gated PMT-240 in a DT implosion clearly shows the D₂ neutron peak.

Shot 63659

\(Y_{DT} = 3.7 \times 10^{12} \)

\(Y_{D_2} = 2.6 \times 10^{10} \)

\(T_i = 2.2 \text{ keV} \)
The measured DT/D₂ yield ratios are somewhat higher than the prediction of an ice-block model.

An ice-block model assumes constant \(n_d, n_t, T_i \), and a fixed D to T ratio in the fuel.

- 36% T is a recent measurement
- Value to be confirmed by LLNL experts
- Systematic error now being determined
- 10% systematic error in T fraction is possible
There is good agreement between data and *LILAC* simulations of the DT/D$_2$ yield ratio in cryogenic shots.

Only recent shots with 25-μm target offsets are shown.
The independently measured DT and D₂ ion temperatures are consistent with a single thermal source.
Summary/Conclusions

The D_2 neutron yield and ion temperature in DT implosions have been measured on OMEGA

- A dedicated neutron time-of-flight (nTOF) detector and a collimated line of sight were developed on OMEGA to measure D_2 neutron yield and ion temperature in DT implosions

- The independently measured DT and D_2 ion temperatures are consistent with a single thermal source

- The experimentally measured ratio of DT to D_2 neutron yields is in good agreement with *LILAC* simulations of DT cryogenic implosions, and somewhat higher than the prediction of an ice-block model