Suppression of Two-Plasmon Decay by Ion-Density Fluctuations

Electron-density perturbation $n_p (n_c)$

Without ion-density fluctuation

With ion-density fluctuation

Range of ion-density fluctuation

R. Yan
University of Rochester
Laboratory for Laser Energetics
Correlations between two-plasmon decay (TPD) and ion-density fluctuations were observed in particle-in-cell (PIC) simulations.

- Analytical theory for homogeneous plasmas shows that transverse ion-density fluctuations can raise the TPD threshold by coupling the two otherwise independent pairs of plasmons.

- A fluid code has been developed to show the suppression of TPD caused by ion-density fluctuations in both homogeneous and inhomogeneous plasmas.
Collaborators

A. V. Maximov and C. Ren
University of Rochester
Laboratory for Laser Energetics

F. S. Tsung
University of California, Los Angeles
The two-plasmon decay (TPD) is an important concern in direct-drive ICF

- TPD is a laser–plasma instability with a low threshold and high-energy electron generation
- Energetic (hot) electrons generated from laser–plasma interactions can preheat the shell and degrade the implosion
PIC simulations show the correlation between TPD saturation with ion-density fluctuations

OSIRIS simulations with $I = 2 \times 10^{15} \text{ W/cm}^2$, $T = 1 \text{ keV}$, $L = 25 \mu\text{m}$

- TPD was observed to be intermittent\(^2,3\)
- TPD saturates as ion fluctuations increase to a certain level
- TPD recurs after ion fluctuations drop

The ion-density fluctuation is driven by the ponderomotive pressure of the plasma waves

- The ion-density fluctuations calculated from the ion-acoustic equation match the PIC results
- Ion-acoustic wave (IAW) equation

\[
(\partial_{tt} - C_s^2 \nabla^2) \delta n = \nabla^2 |E|^2 / (16 \pi m_i)
\]

Drop \(\nabla^2_{\parallel}\), since \(\nabla^2_{\parallel} \ll \nabla^2_{\perp}\)
Understanding how the ion fluctuations saturate TPD is important for modeling the long-term behavior of TPD.

- Previously, various energy sinks were proposed as saturation mechanisms:
 - Ion fluctuations can scatter the plasma waves to high k_{\perp} regions, where they are Landau damped\(^1\)
 - Langmuir decay instability (LDI) as an energy sink described by the Zakharov model\(^2\)

- The observed decrease of $|Ex|$ indicated TPD suppression.

Ion-density fluctuation (δn) can suppress TPD by coupling the two otherwise independent pairs of plasmons1

- Two symmetric pairs of plasmons with $\pm k_\perp$ can be coupled by the transverse ion-density fluctuation with $k_s = 2k_\perp$

- Theory predicts a threshold δn above which the growth of four coupled plasmons becomes zero in a homogeneous plasma

A four-plasmon model predicts that a large δn can suppress TPD growth in homogeneous plasmas.

- We solved two coupled three-wave equations and found the dispersion relation for homogeneous plasmas.

$I = 1 \times 10^{15} \text{ W/cm}^2$
$T = 2 \text{ keV}$
$k_\perp = 0.5 \omega_0/c$

$k_x = 1.1 \omega_0/c$
A linear fluid code has been developed to study the influence of ion-density fluctuation in inhomogeneous plasmas.

\[
\frac{\partial \psi}{\partial t} = \frac{e\phi}{m} - \frac{3n_e^2 n_p}{n} - \vec{v}_0 \nabla \psi \\
\frac{\partial n_p}{\partial t} + \vec{v}_0 \cdot \nabla n_p = -\nabla (n \nabla \psi) \\
\nabla^2 \phi = 4\pi e n_p
\]

The density fluctuation is included in \(n = n_0(x) + \delta n \) as a prescribed function.

BC’s

\[
\partial_x \psi |_0 = \partial_x \psi |_L = 0 \\
\partial_x \phi |_0 = \partial_x \phi |_L = 0 \\
n_p |_0 = n_p |_L = 0
\]
The theoretical results for homogeneous plasmas are verified by the fluid code

\[I = 1 \times 10^{15} \text{ W/cm}^2 \]
\[T = 2 \text{ keV} \]
\[n_0 = 0.241 \, n_c \]

\[\text{FFT}(n_p)(n_c) \]
\[t = 6188/\omega_0 \]

- Those modes with \(k_\perp \sim k_s/2 \) are most effectively impacted
- Only a range of \(k_x \) can be suppressed, consistent with the dispersion relation

\[n_p \, (n_c) \times 10^{-4} \]

Without \(\delta n \)

\[\delta n = 0.6\% \, n_0 \]
\[k_s = 1.0 \, \omega_0/c \]

\[\delta n = 3\% \, n_0 \]
\[k_s = 0.9 \, \omega_0/c \]
Preliminary results show static ion-density fluctuations can suppress TPD in inhomogeneous plasmas

- δn can suppress TPD by raising the threshold

 Ponderomotive drive

 δn

 TPD

 Raising TPD threshold

- This can help find ways to reduce TPD

 With ion-density fluctuation

 Without ion-density fluctuation

$I = 1 \times 10^{15} \text{ W/cm}^2$

$T = 2 \text{ keV}$

$L = 150 \mu\text{m}$

$\delta n = 6\% n_0$

$k_s = 0.15 \omega_0/c$

$I = 1 \times 10^{15} \text{ W/cm}^2$

$T = 2 \text{ keV}$

$L = 150 \mu\text{m}$

$\delta n = 6\% n_0$

$k_s = 0.15 \omega_0/c$
Correlations between two-plasmon decay (TPD) and ion-density fluctuations were observed in particle-in-cell (PIC) simulations.

- Analytical theory for homogeneous plasmas shows that transverse ion-density fluctuations can raise the TPD threshold by coupling the two otherwise independent pairs of plasmons.

- A fluid code has been developed to show the suppression of TPD caused by ion-density fluctuations in both homogeneous and inhomogeneous plasmas.

Related talk: W. Seka (GO5.00006).