A One-Dimensional Planar Model of Shock Ignition

Planar stagnation profiles

Pressure (Gbar)

Shock
No shock

R. Nora
Fusion Science Center
for Extreme States of Matter
and Laboratory for Laser Energetics
University of Rochester

52nd Annual Meeting of the
American Physical Society
Division of Plasma Physics
Chicago, IL
8–12 November 2010
Summary

A planar hydrodynamic model is used to understand the basic physics behind shock ignition

• The peak hot-spot pressure is the optimization metric (model does not include any burn physics)

• An optimum shell thickness (Δ_{crt}) exists that maximizes the conversion of shell kinetic energy into hot-spot internal energy (i.e., hot-spot pressure)

• Implosions augmented with their optimal ignitor shock are shown to have an increase in the Δ_{crt} resulting in $\sim 3 \times$ higher-peak hot-spot pressures over conventional hot-spot ignition
Collaborators

K. S. Anderson, P.-Y. Chang, M. Hohenberger, and R. Betti

University of Rochester
Laboratory for Laser Energetics
Motivation

With the same kinetic energy, SI increases the peak hot-spot pressures versus conventional hot-spot ignition.

A planar slab hydrodynamic model has been developed to understand the basic physics of the increase in shock-ignition pressure.
In conventional ICF, the hot-spot internal energy results from the conversion of shell kinetic energy:

\[E_{L}^{\text{ign}} \sim P_{hs}^{-3^*} \]

KE may be increased by

- Raising the implosion velocity
 - increases the hot-spot pressure
 - drives higher levels of hydrodynamic instabilities

- Thickening the shell
 - more fuel available to burn once ignition is reached
 - thicker shell provides better hydrodynamic stability
 - more often than not, this does not increase the peak hot-spot pressure

Increasing the shell mass above a critical value in conventional hot-spot ignition does not increase the peak hot-spot pressure.

For $\Delta > \Delta_{\text{crt}}$, the shell kinetic energy poorly couples to the hot spot.
Applying a late shock increases the shell velocity just before stagnation, enhancing the coupling of shell kinetic energy to hot-spot internal energy.

Initial configuration

\[u \text{_{imp}} \]

\[\rho_0 \]

Final configuration

\[\rho = 4 \rho_0 \]

\[u > u \text{_{imp}} \]

Return shock collides with ignitor shock at the shell’s inner surface. The shock effectively increases the \(\Delta_{\text{crt}} \) of the initial configuration.
The ignitor shock increases Δ_{crt}, utilizing “unused” kinetic energy to boost the maximum hot-spot pressure.
Summary/Conclusions

A planar hydrodynamic model is used to understand the basic physics behind shock ignition

- The peak hot-spot pressure is the optimization metric (model does not include any burn physics)

- An optimum shell thickness (Δ_{crt}) exists that maximizes the conversion of shell kinetic energy into hot-spot internal energy (i.e., hot-spot pressure)

- Implosions augmented with their optimal ignitor shock are shown to have an increase in the Δ_{crt} resulting in $\sim 3 \times$ higher-peak hot-spot pressures over conventional hot-spot ignition
A simple planar 1-D model is used to optimize the peak hot-spot pressure in ICF implosions

Optimal shock strength

Optimal launch time