Planar Shock-Ignition Studies on OMEGA

M. Hohenberger et al.
University of Rochester
Laboratory for Laser Energetics

52nd Annual Meeting of the
American Physical Society
Division of Plasma Physics
Chicago, IL
8–12 November 2010
Planar-target, high-intensity laser–plasma interactions with relevance to shock ignition have been performed on OMEGA

- Experimental data exhibit hot-electron generation at $T_e \sim 150$ keV with conversion efficiencies of up to $\sim 6\%$

- Scaled 1-D LILAC simulations suggest spike laser-generated pressures of at least 100 Mbar

- 2-D DRACO simulations are currently in progress to fully evaluate the experimental conditions
Collaborators

University of Rochester
Fusion Science Center and
Laboratory for Laser Energetics

A. Casner
CEA, DAM, DIF, Arpajon, France

X. Ribeyre and G. Schurtz
Centre Laser Intenses et Applications,
University of Bordeaux, France
Shock ignition uses a non-isobaric fuel assembly to achieve a lowered ignition condition*

Crucial issues for shock ignition:

- Demonstrate hot-electron temperatures \(\leq 150\) keV generated by spike**

- Demonstrate 400-Mbar spike-generated pressure

**See K. S. Anderson et al., BO5.00009
A laser–plasma interaction experiment was performed in planar geometry with overlapping beams.

- Shock propagation in quartz is observed with SOP and VISAR.
- Hot-electron component is inferred from Mo Kα and x rays.

Pre-plasma pulse: \(\sim 2 \times 10^{14} \text{ W/cm}^2 \)
900-μm spot diameter

Shock pulse: \(\sim 1 \) to \(5 \times 10^{15} \text{ W/cm}^2 \)
250- to 600-μm spot diameter

Legend:
- 22 μm CH
- 30-μm Mo
- 138 μm quartz
- VISAR SOP

Intensity (10^{14} \text{ W/cm}^2)

Time (ns)
2-D DRACO simulations suggest a laser-generated shock pressure in the plastic of up to 300 Mbar.

Simulations exhibit shock-ignition-relevant laser-generated pressures.
Up to 6% of the high-intensity laser energy is converted into hot electrons

- Measured hot-electron temperature is a factor ~3 higher than in spherical geometry*
- This is probably due to significantly larger plasma scale length in planar experiments
- >150-keV electrons can be detrimental to target performance

*See M. Lafon et al., XP9.00044
The shock propagation in quartz was observed with streaked optical pyrometry and VISAR.
Because of blanking, the decaying shock front in the SiO$_2$ can be observed for only $t > 4.2$ ns.

- We have extracted temperature and velocity data from the shock propagation in quartz (Shot 57529).

Straight early features suggest 1-D treatment of hydrodynamics is sufficient.
1-D LILAC simulations are used to estimate a lower limit for the spike-generated shock pressure.

- The spike absorption is varied to match the shock-breakout time (~6.1 ns, Shot 57529)
- Simulations suggest that at 1×10^{15} W/cm² laser-generated pressures of at least ~110 Mbar are achieved
Summary/Conclusions

Planar-target, high-intensity laser–plasma interactions with relevance to shock ignition have been performed on OMEGA

- Experimental data exhibit hot-electron generation at $T_e \sim 150$ keV with conversion efficiencies of up to $\sim 6\%$

- Scaled 1-D LILAC simulations suggest spike laser-generated pressures of at least 100 Mbar

- 2-D DRACO simulations are currently in progress to fully evaluate the experimental conditions