Low-Adiabat, High-Compression Cryogenic Deuterium–Tritium Implosions on OMEGA

V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics

52nd Annual Meeting of the American Physical Society
Division of Plasma Physics
Chicago, IL
8–12 November 2010
Summary

OMEGA experiments are used to validate theoretical hydrodynamic scaling for ρR, $<T_i>_n$, and yield used in calculating ignition factor.

- The ignition factors (ITF, ITFX, χ) define in-flight shell (V_{imp}, α) and hot-spot conditions for achieving ignition.
- Current simulations are in agreement with experimental measurements of $<\rho R>_n$, $<T_i>_n$, yield, and bang time.
- Cross-beam transfer is important for understanding experimental results.
- A model has been developed to relate the hot-spot distortion fraction with reduction in T_i and yield.
Collaborators

Laboratory for Laser Energetics

D. T. Casey, J. A. Frenje, and R. D. Petrasso

Massachusetts Institute of Technology
Outline

• Ignition design and ignition conditions
• Areal density
 – shock tuning
 – control of short-wavelength perturbation growth
• Hot-spot ion temperature and yield
 – validation of drive efficiency
 – effect of perturbation growth
Outline

- Ignition design and ignition conditions
- Areal density
 - shock tuning
 - control of short-wavelength perturbation growth
- Hot-spot ion temperature and yield
 - validation of drive efficiency
 - effect of perturbation growth
The symmetric direct-drive NIF ignition design has a 1-D gain of ~ 50

- $E_L = 1$ to 1.5 MJ
- $V_{imp} = 3.5$ to 4×10^7 cm/s
- IFAR = 35 to 45
- Gain$_{1-D}$ = 45 to 50
The ignition factors depend on shell conditions and fuel mix

- Ignition threshold factor for the indirect-drive NIF design1

\[
\text{ITF} \sim V^{\text{imp}} \alpha^{-4} \left(1 - 1.2\xi\right)^4 \left(\frac{M_{\text{clean}}}{M_{\text{DT}}}\right)^{0.5}
\]

\[
\alpha = \frac{P}{P_{\text{FERMI}}}
\]

\[
\xi = \text{hot-spot distortion fraction}
\]

\[
M_{\text{DT}} = \text{fuel mass}
\]

ITF = 1 has a 50% probability of achieving ignition.

- Threshold factor2: measured conditions at neutron-production time

\[
\chi = \langle \rho R \rangle^{0.8} \left(\frac{\langle T_i \rangle}{4.7 \text{ keV}}\right)^{1.6} \text{YOC}^{0.5}
\]

\[
\chi > 1 \text{ required for ignition}
\]

- ITFX \sim \chi^3 \text{ (defined in Ref. 3)}

One of the main goals of the cryogenic campaign on OMEGA is to validate modeling of \langle \rho R \rangle, \langle T_i \rangle, and yield.

1S. Haan et al., “Point Design Targets, Specifications, and Requirements for the 2010 Ignition Campaign on the National Ignition Facility,” submitted to Phys. Plasmas
Outline

• Ignition design and ignition conditions

• Areal density
 – shock tuning
 – control of short-wavelength perturbation growth

• Hot-spot ion temperature and yield
 – validation of drive efficiency
 – effect of perturbation growth
Areal Density

The shell areal density depends mainly on shell adiabat

\[\langle \rho \rho' \rangle_n = 1.7 \frac{E_{L,MJ}^{1/3}}{\alpha_{if}^{0.54}} \]

- Shell adiabat is determined by
 - shock heating—optimized in triple-picket design
 - excessive short-scale perturbation growth—controlled by shell IFAR = radius/shell thickness

\[\rho R_{max} \]

\[\langle \rho R \rangle_n \]

\[\rho R \text{ (g/cm}^2) \]

\[\text{Time (ns)} \]

Neutron rate (\(\times 10^{24} \text{ s}^{-1} \))

\[\text{Time (ns)} \]

Power (TW)

\[\text{Time (ns)} \]

\[^1 \text{C. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).} \]
Areal Density

Shock tuning is performed using VISAR measurements\(^1\)

Velocity Interferometry System for Any Reflector (VISAR)

5 to 10 \(\mu\)m CD + 0.1 \(\mu\)m Al

\(D_2\)

\[^1\text{T. R. Boehly (NO5.00009).}\]
Simulations reproduce shock-velocity data very well for a variety of picket energies and picket timings.
Simulations reproduce shock-velocity data very well for a variety of picket energies and picket timings.

Accuracy in shock-velocity prediction meets the ignition requirement.
Outline

• Ignition design and ignition conditions

• **Modeling areal density**
 – shock tuning
 – control of short-wavelength perturbation growth

• Hot-spot ion temperature and yield
 – validation of drive efficiency
 – effect of perturbation growth
The areal density is degraded for shells with excessive short-scale perturbation growth.

- Warm CH implosions
- In-flight aspect ratio (IFAR = radius/shell thickness) and adiabat are varied by changing picket energies

\[\text{Areal Density} \]

\[\text{Power (TW)} \]

\[\text{Time (ns)} \]

2. P. B. Radha (To5.00003).
The areal density is degraded for shells with excessive short-scale perturbation growth.
The measured areal density in triple-picket cryogenic implosions is larger than 88% of the 1-D predicted value. The areal-density measurements confirm accuracy of shock tuning and shell stability to short-wavelength perturbations.

MRS data
- 55723
- 295±47 mg/cm²

The areal-density measurements confirm accuracy of shock tuning and shell stability to short-wavelength perturbations.

Outline

• Ignition design and ignition conditions

• Modeling areal density
 – shock tuning
 – control of short-wavelength perturbation growth

• Hot-spot ion temperature and yield
 – validation of drive efficiency
 – effect of perturbation growth
The measured ion temperature is \(~25\%\) lower than the 1-D predicted value.

Neutron yield and temperature degradation are due to 3-D asymmetry effects or a reduction in hydrodynamic efficiency.
Ion Temperature and Yield: Drive Efficiency

Bang time is an accurate measurement of shell velocity

Neutron-averaged ion temperature* \(\langle T_i \rangle \sim V_{\text{imp}}^{1.25} \)

\(V_{\text{imp}} = 3.0 \times 10^7 \text{ cm/s} \) \(\langle T_i \rangle \sim 3.0 \text{ keV} \)

\(V_{\text{imp}} = 2.8 \times 10^7 \text{ cm/s} \) \(\langle T_i \rangle \sim 2.8 \text{ keV} \)

- Experimental bang time is delayed by \(\sim 80 \text{ ps} \)
- \(\frac{\delta V_{\text{imp}}}{V_{\text{imp}}} = \frac{\delta t_{\text{bang}}}{t_{\text{drive}}} = \frac{80 \text{ ps}}{1300 \text{ ps}} = 6\% \)

The scattered-light measurement indicates a loss in laser coupling.
Beam-to-beam energy transfer leads to a reduction in laser coupling\(^1\)

The transfer of energy from (1) to (2) is due to SBS before deposition\(^2\)

\(^1\)I. Igumenshchev et al., “Crossed-Beam Energy Transfer in ICF Implosions on OMEGA,” submitted to Phys. Plasmas

When beam-to-beam energy transfer is included, both the bang time and laser absorption are in good agreement with simulations.
Beam-to-beam energy transfer leads to a reduction in the T_i and yield predictions. An additional reduction in T_i and yield is caused by 3-D asymmetry effects.
Outline

• Ignition design and ignition conditions
• Modeling areal density
 – shock tuning
 – control of short-wavelength perturbation growth
• Hot-spot ion temperature and yield
 – validation of drive efficiency
 – effect of perturbation growth
Perturbation growth leads to a reduction in “clean” hot-spot volume and ion temperature.

\[T_i \left(\frac{r}{r_1-D} \right) = \frac{4\pi}{3} r_3-D \leq V_1-D = \frac{4\pi}{3} r_1-D \]

Low-\(\ell \) modes contribute less\(^1\)

\[r_3-D = r_1-D - \sqrt{\sum_{\ell} (w_\ell a_\ell)^2} = r_1-D (1 - \xi) \]

Extra thermal conduction losses \(\Rightarrow \) lower \(T_e \) and \(T_i \)

\(^1 \)Kishony, Shvarts, Phys. Plasmas 8, 4925 (2001).
Ion-temperature reduction can be related to the hot-spot distortion fraction.

Ref. 1: \[PV \sim T^{5/2} \frac{T}{r} \Rightarrow V_a \sim \frac{T^{5/2}}{\rho_{\text{shell}} r} \]

Perturbations move the shell mass closer to center. Ablation is more efficient. There is more mass in the hot spot, along with lower \(T_i \).

\[\frac{d}{dt} \left(\frac{4\pi}{3} \rho_{\text{hs}} r^3 \right) = 4\pi r^2 \rho_{\text{shell}} V_a \sim rT_{\text{hs}}^{5/2} \]

\[r_{3-D} = r_{1-D} (1 - \xi), \quad \rho_{\text{hs}} T_{\text{hs}} = \rho_{1-D} T_{1-D} \]

\[(1 - \xi)^2 \frac{d\rho_{\text{hs}}^{7/2}}{dt} + 21 \frac{\rho_{\text{hs}}^{7/2}}{2} (1 - \xi) \frac{r_{1-D}}{r_{1-D}} = \frac{d\rho_{1-D}^{7/2}}{dt} + 21 \frac{\rho_{1-D}^{7/2}}{2} \frac{r_{1-D}}{r_{1-D}} \]

Ion Temperature and Yield: 3-D

Model prediction for yield and T_i is consistent with the data
2-D simulations confirm temperature reduction predicted by the model
Reducing target offset, ice roughness, and ablator finish is required to improve yield and T_i.

Results of 2-D DRACO Simulations

Ion Temperature and Yield: 3-D
Ion Temperature and Yield: 3-D

With nonuniformity sources meeting the goal, \(\alpha = 2 \) cryogenic implosions on OMEGA are predicted to achieve YOC \(\sim 15\% \) to 20\% with \(\langle T_i \rangle_n \sim 2.4 \text{ keV} \).
With nonuniformity sources meeting the goal, \(\alpha = 2 \) cryogenic implosions on OMEGA are predicted to achieve YOC \(\sim 15\% \) to 20\% with \(\langle T_i \rangle_n \sim 2.4 \text{ keV} \)
Summary/Conclusions

OMEGA experiments are used to validate theoretical hydrodynamic scaling for ρR, $<T_i>_n$, and yield used in calculating ignition factor

- The ignition factors (ITF, ITFX, χ) define in-flight shell (V_{imp}, α) and hot-spot conditions for achieving ignition
- Current simulations are in agreement with experimental measurements of $<\rho R>_n$, $<T_i>_n$, yield, and bang time
- Cross-beam transfer is important for understanding experimental results
- A model has been developed to relate the hot-spot distortion fraction with reduction in T_i and yield