Shock-Ignition Experiments on OMEGA at NIF-Relevant Intensities

C. Stoeckl
University of Rochester
Laboratory for Laser Energetics

51st Annual Meeting of the American Physical Society
Division of Plasma Physics
Atlanta, GA
2–6 November 2009
A new setup enables studies of shock-ignition at intensities of up to 1×10^{16} W/cm2 on OMEGA

- Shock ignition uses a highly shaped laser pulse with a trailing high intensity ($\sim 5 \times 10^{15}$ W/cm2) spike
- Good coupling of the shock-beam energy was observed, leading to an $\sim 20\times$ increase in neutron yield.
- A significant Raman backscattering signal was observed with no indication of the two-plasmon-decay instability
- Up to 16% of the energy of the high intensity beams was converted into hot electrons of ~ 45 keV temperature
Collaborators

University of Rochester
Laboratory for Laser Energetics
and Fusion Science Center

J. A. Frenje and R. D. Petrasso
Massachusetts Institute of Technology
Shock ignition requires $\sim 3.5 \times$ less energy to achieve marginal ignition than a conventional hot-spot isobaric target.

Marginal shock ignition (350 kJ)

Marginal conventional ignition (1.2 MJ)

Conventional hydro-equivalent marginal ignition

Laser–plasma interaction during the spike pulse and hot-electron generation are important issues for shock ignition.

Hot e^- with Maxwellian $T_{\text{hot}} = 150$ keV, $E_{\text{hot}} = 17\%$ of spike energy, treated using a multigroup diffusion model.

LILAC simulations by C. D. Zhou and R. Betti
60 OMEGA beams are split into 40 low-intensity drive beams and 20 tightly focused, delayed beams.

Hydrodynamic performance, energy coupling, laser backscattering, and hot-electron generation are studied.

- The delay and intensity of the tightly focused beams are varied.
A significant amount of energy is coupled into the capsule by the high-intensity beams.

60 beam, 20.8 kJ uniform illum. N yield: 1.3×10^{10}

40 beam, 13.7 kJ nonuniform illum. N yield: $\sim 2 \times 10^8$

40 + 20 beam, 13.6 + 4.8 kJ = 18.4 kJ nonuniform illum. N yield: 3.7×10^9

- ~11% power imbalance
Up to 16% of the shock-beam energy is converted into hot electrons of 45-keV temperature.

- The neutron yield enhancement is most sensitive to shock-beam timing.
Up to 35% of the shock-beam laser energy is lost due to backscatter.

- No measurable signal of the 3/2 harmonic
- SRS dominates back reflection at highest intensity
- SBS reflection is relatively stable at ~10%
Experiments with repointed beams show reduced illumination nonuniformities and improved performance.

- ~2.6% power imbalance with repointed beams

Calculated 40-beam drive power

<table>
<thead>
<tr>
<th>Direct laser power deposited (TW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- 40 beam, 13.5 kJ improved illum. N yield: 1.6×10^9
- 40 + 20 beam, $13.9 + 5.6 \text{ kJ} = 19.5 \text{ kJ}$ improved illum. N yield: 3.3×10^9

X-ray pinhole images

View 1

View 2
A new setup enables studies of shock-ignition at intensities of up to 1×10^{16} W/cm2 on OMEGA

- Shock ignition uses a highly shaped laser pulse with a trailing high intensity ($\sim 5 \times 10^{15}$ W/cm2) spike
- Good coupling of the shock-beam energy was observed, leading to an $\sim 20\times$ increase in neutron yield.
- A significant Raman backscattering signal was observed with no indication of the two-plasmon-decay instability
- Up to 16% of the energy of the high intensity beams was converted into hot electrons of ~ 45 keV temperature