Numerical Investigation of the Effects of Cross-Beam Energy Transfer (CBET) on the Drive Uniformity of OMEGA Implosions

SG4 and CBET laser-beam profiles
Low-adiabat, cryo implosion

Mass density at peak burn (DRACO)

Normalized laser intensity

Beam radius (mm)

51st Annual Meeting of the American Physical Society
Division of Plasma Physics
Atlanta, GA
2–6 November 2009
Summary

Target uniformity is more susceptible to the effects of CBET as the adiabat of the implosion is lowered

- Effective laser-beam profiles were calculated with the CBET model implemented in 1-D LILAC
- Time-independent laser-beam profiles, representing a “worst-case” scenario, were used in 2-D DRACO simulations to evaluate the effects of CBET on target performance for a range of implosion adiabats
- CBET was found to have little or no effect on high- to medium-adiabat implosions
- Simulations indicate that CBET does act to reduce target performance in low-adiabat implosions

*D. H. Edgell (JO5.00014); I. V. Igumenshchev (JO5.00015).
Collaborators

University of Rochester
Laboratory for Laser Energetics
Simulations using the CBET model better reproduce the experimental FABS scattered-light spectrum*

- Red-shifted “fingers” are reproduced more accurately with the CBET model

*D. H. Edgell (JO5.00014).
Effective beam profiles are used to emulate the CBET in 2-D DRACO simulations

- The CBET model is implemented into the 1-D code LILAC*

- Ray intensity along its trajectory**

\[
I^{(1)} = I_0^{(1)} \exp \left(\int L^{-1} d\ell \right),
\]

\[
L^{-1} \int \frac{n/n_c}{1 - n/n_c} \frac{I^{(2)}}{f(Z)T}
\]

*S. V. Igumenshchev (JO5.00015)

An initial investigation of CBET shows that the effective beam profile changes during the implosion.
Time-independent effective beam profiles were selected for each considered implosion.

- CBET profiles were rescaled to have the same energy as SG4 to reproduce the drive.
An analysis of the effective laser-beam profiles shows an increase in medium-wavelength illumination nonuniformities.

- SG4 laser-beam profile was designed to minimize σ_{rms}

$$I(r) = I_0 e^{-\left(\frac{r}{r_0}\right)^n}$$ – beam-intensity profile

n – order of super-Gaussian
A high-adiabat implosion shows a negligible increase in stagnated shell nonuniformity.

Shot 54881 target

Mass density at peak burn (DRACO)

24 kJ SG1018 laser pulse
A medium-adiabat implosion shows an unimportant increase in \(l = 16 \) perturbation due to CBET.

Shot 41089 target

- **D\(_2\) gas**
- **CH**
- 27 \(\mu \)m
- 430 \(\mu \)m
- 403 \(\mu \)m

20.5 kJ LA1501 laser pulse

Laser power (TW)

Time (ns)

Mass density at peak burn (DRACO)

- SG4
- CBET
- YOC 99.8%
- YOC 98.7%

\(\rho \) (g/cm\(^3\))

0

90
A low-adiabat, D\textsubscript{2} cryo target implosion shows much higher nonuniformities and performance degradation.

Shot 47206 target:
- D\textsubscript{2} gas
- D\textsubscript{2} ice
- CD

16.5 kJ HE363001P laser pulse

Mass density at peak burn (DRACO):
- SG4
- CBET
- YOC 98.4%
- YOC 81.5%

Laser power (TW):
- 11

Time (ns):
- 0 to 4

Density (g/cm3):
- 0 to 190
Target uniformity is more susceptible to the effects of CBET as the adiabat of the implosion is lowered.

- Effective laser-beam profiles were calculated with the CBET model implemented in 1-D LILAC.
- Time-independent laser-beam profiles, representing a “worst-case” scenario, were used in 2-D DRACO simulations to evaluate the effects of CBET on target performance for a range of implosion adiabats.
- CBET was found to have little or no effect on high- to medium-adiabat implosions.
- Simulations indicate that CBET does act to reduce target performance in low-adiabat implosions.

*D. H. Edgell (JO5.00014); I. V. Igumenshchev (JO5.00015).