Inferring the Electron Temperature of Shocked Liquid Deuterium Using Inelastic X-ray Scattering

S. P. Regan
University of Rochester
Laboratory for Laser Energetics

51st Annual Meeting of the American Physical Society Division of Plasma Physics
Atlanta, GA
2–6 November 2009
Summary

Inelastic x-ray scattering is a powerful diagnostic for equation-of-state measurements

- The electron temperature (T_e) of the shocked deuterium is inferred from the spectral line shapes of the noncollective x-ray scattering.

- Initial results from the new cryogenic experimental platform are consistent with DRACO 2-D simulations.
 - $T_e \sim 10$ eV at $P \sim 10$ Mbar

Future experiments will combine inelastic x-ray-scattering observations with shock-velocity measurements to infer n_e, T_e, Z, ρ, and P of the shocked deuterium.
Collaborators

D. D. Meyerhofer,* T. C. Sangster, and V. A. Smalyuk

Laboratory for Laser Energetics
University of Rochester

*also Departments of Mechanical Engineering and Physics
University of Rochester

K. Falk and G. Gregori
Oxford University, Oxford, UK

T. Doeppner, S. H. Glenzer, and O. L. Landen
Lawrence Livermore National Laboratory
The shell adiabat is an important parameter for inertial confinement fusion (ICF)

- Shell adiabat \(\alpha = \frac{P_{\text{fuel}}}{P_{\text{Fermi}}} \)
- The shell adiabat of the target is mainly controlled by the shock-wave strength.

Motivation for measuring low adiabat (\(\alpha \sim 1 \) to 3) plasma conditions in shocked deuterium:

\(E_{\text{min}} \sim \alpha^{1.8} \) (minimum laser energy for ignition)*,**

A laser-ablation–driven shock wave is launched in a planar liquid-deuterium target creating warm dense matter.

Uniform conditions with \(n_e = 2.0 \times 10^{23} \, \text{cm}^{-3} \) (\(\rho \sim 0.8 \, \text{g/cm}^3 \)) and \(T_e = 22 \, \text{eV} \) are predicted.

\(J. \, A. \, \text{Delettrez et al.}, \, \text{Phys. Rev. A} \ 36, \ 3926 \ (1987) \).
An experimental platform to study inelastic x-ray scattering1 from shocked deuterium has been demonstrated.

The T_e of the shocked deuterium is inferred from the spectral line shapes of the noncollective x-ray scattering.

Inelastic x-ray scattering is a powerful diagnostic for high-pressure ($P > 10$ Mbar) EOS research, which is inaccessible to optical shock-velocity measurements.
T_e is inferred from the Doppler-broadened Compton-downshifted peak of the noncollective x-ray scattering for $T_e > T_F^*$

Calculated x-ray scattering from electrons ($\alpha_s \sim 0.6$)

- $\theta = 90^\circ$
- $\lambda_0 = 4.188 \, \text{Å (Cl Ly}_\alpha)$
- $T_e = 22 \, \text{eV}$
- $n_e = 2.0 \times 10^{23} \, \text{cm}^{-3}$, $Z = 1$

Compton downshifted energy (eV)

$$\Delta E_c = \frac{\hbar^2 k^2}{2m_e} \quad k = \frac{4\pi}{\lambda_0} \sin\left(\frac{\theta}{2}\right)$$

- θ: scattering angle
- λ_0: wavelength of probe

Scattering parameter

$$\alpha_s = \frac{1}{k\lambda_D}$$

$\alpha_s < 1$ noncollective \rightarrow x rays scatter from individual electrons $\rightarrow T_e^*$

$\alpha_s > 1$ collective \rightarrow x rays scatter from plasmons $\rightarrow n_e^{**}$

Noncollective x-ray scattering from shocked deuterium has been observed

Noncollective x-ray scattering

$n_e = 0.4 \times 10^{23} \text{ cm}^{-3}$

$Z = 0.6$

$T_e (\text{expt.}) < T_e (1-D) = 22 \text{ eV}$:
X rays are scattered from shocked and unshocked deuterium.
Initial results from the new cryogenic experimental platform are consistent with DRACO* 2-D simulations.

\[T_e (1-D) = 22 \text{ eV} \rightarrow T_e (2-D) = 5 \text{ to } 15 \text{ eV} \rightarrow T_e (expt.) \sim 10 \text{ eV} \]

\[Z (1-D) = 1 \rightarrow Z (2-D) \sim 0.5 \text{ to } 0.8 \rightarrow Z (expt.) \sim 0.6 \]

Summary/Conclusions

Inelastic x-ray scattering is a powerful diagnostic for equation-of-state measurements

- The electron temperature \(T_e \) of the shocked deuterium is inferred from the spectral line shapes of the noncollective x-ray scattering.

- Initial results from the new cryogenic experimental platform are consistent with DRACO 2-D simulations.
 - \(T_e \approx 10 \text{ eV} \) at \(P \approx 10 \text{ Mbar} \)

Future experiments will combine inelastic x-ray-scattering observations with shock-velocity measurements to infer \(n_e, T_e, Z, \rho, \) and \(P \) of the shocked deuterium.