Target Performance in Low-Adiabat, Warm Implosions on OMEGA

\[\alpha = 3; \quad I = 5 \times 10^{14} \text{ W/cm}^2 \]

- Experiment
- Simulated

\[\rho R \text{ (mg/cm}^2) \]

Hot-spot convergence ratio
Warm, plastic shells have been imploded on OMEGA with the goal of identifying the effect of preheat on compression.

- Preheat caused by energetic coronal electrons from two plasmon decay may compromise compression in direct-drive inertial confinement fusion implosions.
- Low-adiabat pulse shapes will be used to irradiate warm plastic shells with varying intensities.
- Observed areal density at low intensities is reduced relative to spherically symmetric simulations, possibly caused by reduced laser-energy absorption.
- A model* that includes energy transfer between beams results in reduced absorption and improves agreement with observed values of areal density, while reproducing time of neutron production.

*I. Igumenschev (JO5.00015).
Collaborators

University of Rochester
Laboratory for Laser Energetics

J. A. Frenje and R. D. Petrasso
Plasma Science and Fusion Center
Massachusetts Institute of Technology

D. Shvarts
Department of Physics, Negev Research Center, Israel
Preheat caused by energetic coronal electrons from two plasmon decay may compromise compression in direct-drive inertial confinement fusion implosions.

\[\alpha = 2 \text{ to } 5; \text{ CH shell, } I = 0.35 \text{ to } 1.1 \times 10^{15} \text{ W/cm}^2 \]

\[I = 3.5 \times 10^{14} \text{ W/cm}^2 \]

- \(\alpha = P/P_F \)
- TPD threshold parameter:
 \[\eta = I_{14} L_{\mu m}/230 T_{\text{keV}} \]

- Energy deposited by these electrons in the cold shell may compromise compression of the imploding shell**

A series of implosions on warm, plastic targets have been designed to isolate the effect of energetic electrons.

\[9 \times 10^{14} \quad 26 \text{ kJ} \]

\[I = 5 \times 10^{14} \text{ W/cm}^2 \]

16 kJ

\[\rho R^*_{\text{max}} \sim \frac{E_L^{0.33} v_{\text{imp}}^{0.06}}{\alpha_{\text{inn}}^{0.55}} \]

- These implosions are weakly sensitive to shock mistiming

Decompression of the shell caused by reduced absorption* reduces the areal density achieved in the implosion

\[
\begin{array}{|c|c|c|}
\hline
& f_{\text{abs}} \% & \rho R^1 \text{(scaling)} \text{ (mg/cm}^2) & \rho R \text{ (mg/cm}^2) \\
\hline
\text{No energy transfer between beams} & 83 & 272 & 272 \\
\text{With cross-beam transfer} & 70 & 257 & 217 \\
\hline
\end{array}
\]

For a given adiabat\(^1\):

\[
\rho R \sim (E_L)^{1/3}
\]

*I. Igumenschev (JO5.00015).
The observed areal density is reduced relative to simulation even at low intensity.

$I = 5 \times 10^{14} \text{ W/cm}^2$

- ρR (Expt)
- ρR (Simulated)

Secondary proton spectrum

Normalized yield (MeV)
The time of neutron production is used to set the laser-energy absorption in the simulation.

- X-ray emission, measured through DANTE, also shows delayed core emission.
Better agreement on the areal density can be obtained when bang time is reproduced by the model.
Summary/Conclusions

Warm, plastic shells have been imploded on OMEGA with the goal of identifying the effect of preheat on compression

- Preheat caused by energetic coronal electrons from two plasmon decay may compromise compression in direct-drive inertial confinement fusion implosions
- Low-adiabat pulse shapes will be used to irradiate warm plastic shells with varying intensities
- Observed areal density at low intensities is reduced relative to spherically symmetric simulations, possibly caused by reduced laser-energy absorption
- A model* that includes energy transfer between beams results in reduced absorption and improves agreement with observed values of areal density, while reproducing time of neutron production

*I. Igumenschev (JO5.00015).