Fast-Electron Generation with Multi-kJ Pulses on OMEGA EP

\[E_L = 1 \text{ J}, \quad \tau_L = 1 \text{ ps} \]

\[\eta_{L\rightarrow e} = \sim 20\% \]

Increasing energy density

P. M. Nilson
University of Rochester
Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics and Laboratory for Laser Energetics

51st Annual Meeting of the American Physical Society
Division of Plasma Physics
Atlanta, GA
2–6 November 2009
Fast-Electron Generation with Multi-kJ Pulses on OMEGA EP

\[E_L = 1 \text{ J}, \tau_L = 1 \text{ ps} \]
\[10 \text{ J} \leq E_L \leq 2100 \text{ J}, \tau_L = 10^{-12} \text{ ps} \]

Increasing energy density

P. M. Nilson
University of Rochester
Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics and Laboratory for Laser Energetics

51st Annual Meeting of the American Physical Society
Division of Plasma Physics
Atlanta, GA
2–6 November 2009
OMEGA EP experiments show fast-electron coupling independent of laser energy and pulse duration

- High-energy-conversion efficiency into fast electrons is critical for various HEDP applications, e.g., dense-matter probing and fast ignition
- K-photon-emission suppression measurements within copper foil targets indicate $\eta_{L\rightarrow e} \approx 20\%$ over a wide range of target volumes
- Time-resolved x-ray emission measurements suggest energy coupling occurs over the whole duration of the incident drive
Collaborators

University of Rochester
Laboratory for Laser Energetics

A. J. MacKinnon and P. K. Patel
Lawrence Livermore National Laboratory
Livermore, CA

K. Akli
General Atomics, San Diego

*also at Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics, University of Rochester
†also at Mechanical Engineering and Physics Department, University of Rochester
Fast-electron recirculation in mass-limited targets allows access to high-energy-density phenomena

- Refluxing is caused by Debye-sheath field effects\(^1,2\)
- Majority of fast electrons are stopped in the target
- Provides a simple geometry for testing laser-coupling, electron-generation, and target-heating models\(^3,4\)

Target bulk-heating affects $L \rightarrow K$ and $M \rightarrow K$ electron transitions*

- Inelastic electron–electron collisions heat the target
- Collisional ionization with thermal background plasma occurs
- $T_e > 100$ eV causes significant M-shell depletion
- Target heating is inferred from K_β/K_α

K_α ($\gtrsim 8.05$ keV)
K_β ($\gtrsim 8.91$ keV)

Copper energy levels

OMEGA EP experiments were performed with up to 2.1-kJ, 10- to 12-ps laser pulses

- Laser intensities $I \sim 5 \times 10^{18} \text{ W/cm}^2$
- Copper foil targets
- Target volumes: $500 \times 500 \times 50 \mu\text{m}^3$ to $75 \times 75 \times 5 \mu\text{m}^3$
The effect of bulk-target heating on the K-shell-emission spectrum is observed with OMEGA EP.

Cu target: 500 × 500 × 20 μm³
Laser: 950 J, 10 ps

Cu target: 75 × 75 × 5 μm³
Laser: 1042 J, 10 ps
Electron-energy coupling efficiency is independent of laser energy and pulse duration*

- $\eta_{L\rightarrow e}$ inferred from K-photon suppression measurements represents a minimum electron-energy conversion efficiency
- Energy-conversion efficiency offset due to high-energy proton acceleration is assumed to be small
- $\eta_{L\rightarrow p} \sim 1\%$ with 1-kJ, 10-ps pulses**

$E_L = 1 \text{ J}, \tau_L = 1 \text{ ps}$
$10 \text{ J} \leq E_L \leq 2100 \text{ J}, \tau_L = 10\sim12 \text{ ps}$

**Private communication with L. Gao.
Time-resolved x-ray emission measurements suggest energy coupling occurs over the whole duration of the incident drive.

- Streak camera is sensitive to bremsstrahlung, inner-shell radiation, and thermal ionic-line emission.
- OMEGA EP: $E_L = 974 \text{ J}, \tau_L = 11 \text{ ps}$
 $100 \times 100 \times 10^{-\mu \text{m}^3} \text{ Cu}$

X-ray emission rise time correlates to the laser-pulse duration.
Summary/Conclusions

OMEGA EP experiments show fast-electron coupling independent of laser energy and pulse duration

• High-energy-conversion efficiency into fast electrons is critical for various HEDP applications, e.g., dense-matter probing and fast ignition

• K-photon-emission suppression measurements within copper foil targets indicate $\eta_{L \rightarrow e} \approx 20\%$ over a wide range of target volumes

• Time-resolved x-ray emission measurements suggest energy coupling occurs over the whole duration of the incident drive
1-D LILAC calculations confirm target decompression is minimal over a 10-ps drive time

- **500 × 500 × 20-μm³ Cu target**
- **200 J of electron energy with \(T_h = 1 \) MeV**
- **10-ps energy-deposition phase (FWHM)**

Thermal decompression dominates.
1-D *LILAC* calculations confirm target decompression is minimal over a 10-ps drive time.

- $100 \times 100 \times 10^{-3} \text{ Cu target}$
- 200 J of electron energy with $T_h = 1 \text{ MeV}$
- 10-ps energy-deposition phase (FWHM)

Radiation cooling quenches the HED state in mass-limited targets prior to decompression.