Development of Scintillator Detectors for Fast-Ignition Experiments and Down-Scattered Neutron Measurements

Liquid scintillator with O₂ saturated xylene

 γ-ray signals without gating

Signal (V)

0.0

-0.2

-0.4

Gate end

D₂ neutrons

Scintillator decay tail

0 200 400 600 800 1000

Time (ns)

51st Annual Meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2–6 November 2009

V. Yu. Glebov
University of Rochester Laboratory for Laser Energetics
Summary

Scintillator detectors have been developed for fast-ignition experiments and down-scattered neutron measurements.

• A small signal must be recorded after a very large DT or hard x-ray signal in a neutron time-of-flight detector to measure down-scattered neutrons in cryogenic-DT implosions or to measure neutron yield after gamma flesh in fast-ignition (FI) experiments.

• Several detectors with plastic and liquid scintillators were tested at the Omega/Omega EP Laser Facility for cryogenic-DT implosions and integrated fast-ignition experiments.

• Only nTOF detectors with an oxidized liquid scintillator and gated PMT outside a direct line of sight are suitable for FI experiments and down-scattered neutron measurements.
Collaborators

University of Rochester
Laboratory for Laser Energetics

M. J. Moran
Lawrence Livermore National laboratory

R. Lauck
Physikalisches-Technische Bundesanstalt, Braunschweig, Germany
Thick lead is an ineffective scintillator shield in FI-cone experiments and down-scattered neutron measurements.

In FI experiments gammas penetrate lead and saturate the PMT. Lead does not shield the 14.1-MeV neutrons in down-scattered measurements.
A gated PMT in direct line of sight operates only for low energy of the short-pulse laser or low DT yield

BC-422 plastic scintillator
40-mm diam, 20-mm thick
Photek PMT-240 gated PMT
Two-stage MCP, gain 10^6
At 5.2 m from a target
1-in. Pb shielding all around

\[\gamma_{D_2} = 1.17 \times 10^8 \]

OMEGA EP energy 0 J

Gate breakthrough
PMT saturation

\[\gamma = \frac{c}{\tau} \]

\[D_2 = 1.17 \times 10^{8} \]

\[\gamma = 517 \text{ J} \]

\[\gamma = 770 \text{ J} \]
A nTOF detector with gated PMT outside direct line of sight operates at any energy of the short-pulse laser.

Pilot B plastic scintillator, 17.78-cm diam, 10-cm thick, Photek PMT-240 gated PMT two-stage MCP, gain 10^6 at 12.4 m from a target.

The main problem of this nTOF detector is a long scintillator decay tail.
A new nTOF detector with an oxidized liquid scintillator and gated PMT measures neutron yields in FI experiments.

Liquid scintillators enriched with an O₂ quenching agent have a fast-decay time—the γ-ray-induced fluorescence is efficiently suppressed.

The nTOF detector with an oxidized liquid scintillator has no long decay tail from a strong γ-ray pulse.

This nTOF detector was used in FI experiments to measure the D$_2$ neutron yield.
The only way to infer the ρR on the NIF in 2010 will be the primary neutrons “downscattered fraction.”

The NIF will use Tritium:Hydrogen:Deuterium (75:23:2) fuel (THD) for the at-scale parameters tuning of ICF implosions.

Much of our recent effort has focused on how to measure the “down-scatter fraction” using nTOF techniques—we are testing a solution now!
The NIF nTOF20-Spec system will consist of the two collimators and a large scintillator with two gated PMT.
Testing and calibration of nTOF20-Spec detectors is ongoing on OMEGA.

Calibration of the two NIF nTOF20-Spec detectors will be completed on OMEGA before February 2010.
Summary/Conclusions

Scintillator detectors have been developed for fast-ignition experiments and down-scattered neutron measurements.

- A small signal must be recorded after a very large DT or hard x-ray signal in a neutron time-of-flight detector to measure down-scattered neutrons in cryogenic-DT implosions or to measure neutron yield after gamma flesh in fast-ignition (FI) experiments.

- Several detectors with plastic and liquid scintillators were tested at the Omega/Omega EP Laser Facility for cryogenic-DT implosions and integrated fast-ignition experiments.

- Only nTOF detectors with an oxidized liquid scintillator and gated PMT outside a direct line of sight are suitable for FI experiments and down-scattered neutron measurements.