Analysis of the Effect of High-Z-Doped CH on Preheat and Hard X-Ray Radiation from Two-Plasmon-Decay Electrons

J. A. Delettrez
University of Rochester
Laboratory for Laser Energetics

51st Annual Meeting of the American Physical Society
Division of Plasma Physics
Atlanta, GA
2–6 November 2009
Doping CH shells with Si raises the threshold intensity and slightly reduces HXR emission above intensities of 10^{15} W/cm2.

- Experiments were carried out with varying thicknesses of CHSi over CH shells to study the effect of high-Z doping on HXR emission.
- The increase in the threshold intensity is due to higher electron temperatures in the corona caused by the higher $\langle Z \rangle$ of CHSi.
- For intensities above 10^{15} W/cm2, the HXR emission is similar for CH and CHSi.
- The source and transport model in the 1-D code LILAC for doping the fast electrons reproduces well the HXR emission for both CH and CHSi targets.
Collaborators

C. Stoeckl, P. B. Radha, V. N. Goncharov, A. V. Maximov, and J. F. Myatt

University of Rochester
Laboratory for Laser Energetics
and Fusion Science Center

J. A. Frenje

Massachusetts Institute of Technology
Si doping leads to a higher intensity threshold but similar HXR emission above 10^{15}W/cm^2

- CHSi thicknesses: 0, 3, 5, 10 μm
- CH layer reaches quarter critical at the end of the pulse for the 5-μm CHSi case.
The fast-electrons are created at the $\eta_{c}/4$ surface and transported using a radial straight-line model

- The energy source is taken to scale as

$$\frac{E_{\text{fast}}}{E_{1/4N_c}} = F_{fe} S(\eta).$$

- F_{fe}, the energy fraction taken from each ray in the laser ray trace, is a free parameter.

- $\eta = I_{14L_{\mu m}/233} T_{c} \text{ (kev)}$ is the threshold parameter\(^1\) evaluated at the $N_{c}/4$ surface.

- $S(\eta)$ is a source function determined from experiment results.

\(^{1}\text{A. Simon et al., Phys. Fluids 26, 3107 (1983).}\)
The source function was chosen to match the integrated HXR emission from warm CH targets over all intensities.

The percentage of fast electrons as a function of the threshold parameter η is shown on the left graph. The source function $F_{fe} = 0.025$ is given. Shots fall in this regime.

On the right graph, the HXR emission is shown as a function of laser intensity. The straight-line fit is indicated. The threshold parameter $F_{fe} = 0.025$ is also shown.

32 pC/mJ used to convert simulation emission.

*B. Yaakobi et al., Phys. Plasmas 12, 062703 (2005) and private communication.
Simulations reproduce well the trend in HXR emission for the various CHSi thicknesses.
The Si doping reduces the threshold parameter because it increases laser absorption, which produces higher coronal temperatures.

All values taken at the quarter-critical surface.
Measured HXR emissions for both CH and CHSi targets have the same dependence on the threshold parameter. For CHSi, the HXR emission from simulations is slightly higher than measured, possibly caused by the effect of the higher \(\langle Z \rangle \) on saturation.*

*See A. V. Maximov, JO5.00011
Doping CH shells with Si raises the threshold intensity and slightly reduces HXR emission above intensities of 10^{15} W/cm2

- Experiments were carried out with varying thicknesses of CHSi over CH shells to study the effect of high-Z doping on HXR emission.

- The increase in the threshold intensity is due to higher electron temperatures in the corona caused by the higher $\langle Z \rangle$ of CHSi.

- For intensities above 10^{15} W/cm2, the HXR emission is similar for CH and CHSi.

- The source and transport model in the 1-D code LILAC for doping the fast electrons reproduces well the HXR emission for both CH and CHSi targets.