High-Precision Measurements of the Equation of State of Polymers at 1 to 10 Mbar

M. A. Barrios
University of Rochester
Laboratory for Laser Energetics

51st Annual Meeting of the American Physical Society
Division of Plasma Physics
Atlanta, GA
2–6 November 2009
Precision equation-of-state (EOS) measurements are obtained on various polymers at 1 to 10 Mbar

- Precise knowledge of ablator EOS is required for ICF target designs
 - some NIF target designs use Ge-doped GDP

- Laser-driven shock waves produce EOS data using the impedance-matching (IM) method

- CH data allows for model discrimination, favoring SESAME 7592
 - mild softening is not accounted for between 2 to 4 Mbar
 - single- and double-shock results display similar behavior

- Stoichiometry effects between CH and CH\(_2\) are well-predicted by models

- EOS data for NIF ablator material was acquired
I. Motivation

II. Precision EOS measurements

III. Experiments

 A. Single shock, principal Hugoniot measurements
 i. Polystyrene (CH)
 ii. Polypropylene (CH$_2$)
 iii. GDP (CH$_{1.3}$O$_{0.023}$)
 iv. 0.6at% Ge-doped GDP

 B. Double shock, off Hugoniot measurements
 i. Polystyrene (CH)

C:H ratio

NIF ablators
Collaborators

D. E. Fratanduono
T. R. Boehly
D. D. Meyerhofer

University of Rochester
Laboratory for Laser Energetics

D. G. Hicks
P. M. Celliers
J. Eggert

Lawrence Livermore National Laboratory
Motivation

High-pressure EOS data are required to understand high-energy-density (HED) physics.

- Reliable EOS data is important to dense plasma theory, where radiation hydrodynamic codes are used.
- Need material EOS over wide density and temperature ranges.
- Existing data covers a small fraction of these ranges.

EOS measurements above 1 Mbar are used to benchmark models.

Some NIF ignition target designs use Ge-doped plastic ablators—high-pressure EOS measurements are needed.
Hydrocarbons are common ablator materials for ICF fuel pellets

- Ablator material properties are essential to the design and simulation of ICF targets
- By varying C to H ratio, the effect of stoichiometry on high-pressure behavior can be investigated

<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrene</td>
<td>CH</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>CH$_2$</td>
</tr>
<tr>
<td>Glow discharge polymer (GDP)</td>
<td>CH${1.3}$O${0.023}$</td>
</tr>
<tr>
<td>Ge-doped GDP</td>
<td>CH${1.3}$O${0.023}$ + Ge$_{\text{at% 0.6}}$</td>
</tr>
</tbody>
</table>

EOS measurements on CH$_x$ will provide benchmark behavior on hydrocarbon polymers under extreme P, ρ conditions.
Polymer EOS experiments were performed using laser-driven shock waves on OMEGA

- Experiments used laser energies between 200 to 1130 J delivered in a nominally 2-ns square pulse.
- Average laser irradiances on target were 0.3 to 1.1×10^{14} W/cm2

VISAR* has time resolution of <30 ps and shock-velocity precision of ~1%.
Impedance Matching $U_s = F(U_p)$

EOS data are obtained from the impedance-matching technique

Rankine–Hugoniot Equations

\[
\rho_0 U_s = \rho_1 (U_s - U_p)
\]

\[
P_1 - P_0 = \rho_0 U_s U_p
\]
Experimental errors must be minimized and systematic errors understood for precision EOS measurements.

- Measurement accuracy depends on knowledge of standard.
- Most impedance-matching (IM) studies quote only random errors.
- Cannot propagate systematic errors using theoretical EOS.

- Random errors

\[
\frac{\delta \rho}{\rho} \propto (\eta - 1) \times \frac{\delta U_s}{U_s}, \quad \text{where} \quad \eta = \frac{\rho}{\rho_0};
\]

\[
\eta \approx 4 - 6 \rightarrow \frac{\delta \rho}{\rho} \propto (3 - 5) \times \frac{\delta U_s}{U_s}
\]
Random Errors

Higher precision is obtained with a transparent standard compared to an opaque standard.

Random Errors

- Only information is transit time
- Can use only integrated shock
- No knowledge of shock stability

EOS observables are obtained at the contact interface.

Sample

VISAR-1 shot 29425

- Contact interface
- U_s is inferred from transit times
- Integrated velocity

VISAR-1 shot 52118

- α-quartz pusher
- Instantaneous velocities
- Contact interface

U_s is inferred from transit times.
Higher precision is obtained with a transparent standard compared to an opaque standard.

Random Errors

- Only information is transit time
- Can use only integrated shock
- No knowledge of shock stability

Sample

VISAR-1 shot 29425

Integrated velocity

VISAR-1 shot 52118

Contact interface

\(U_s \) is inferred from transit times

\(\Delta x \)
α-quartz has been validated as an EOS standard

Systematic Errors

α-quartz EOS (Al as reference)

Mbar 1.4 4.5 9.45 15.94

Shock speed (μm/ns)

35 30 25 20 15 10 5

Particle speed (μm/ns)

Laser¹ ~0.3 ns
Nuclear ~10 μs
Gas gun explosive ~100s of ns

SiO₂ Aerogel

Release isentrope (±)
Direct impact

Pressure (Mbar)

Direct measurement²
IM with Al standard²
IM with α-quartz standard³

\(\alpha \)-quartz’s release isentrope is approximated using the Mie-Grüneisen EOS

- \(\Gamma \) describes pressure differences between equal volume states on the Principal Hugoniot

\[
\Gamma = V \left(\frac{dP}{dE} \right)_v
\]

- Combining the above with the first law of thermodynamics,

\[
dE = T dS - P dV
\]

with \(dS = 0 \), leads to a recursion relation describing a loci of isentropes in the \(P-V \) plane

- Based on models, \(\Gamma \) is assumed to be constant in the high-pressure fluid regime, with value \(\Gamma = 0.64 \pm 0.11 \)
Precision EOS data tightly constrain polystyrene (CH) EOS models

- SESAME 7592 provides the best fit to the measurements
- CH displays softer behavior between 2 to 4 Mbar than SESAME 7592

Gas gun data

Total error

Random error

Softening?
The dependence on the C:H ratio is well-predicted by models
The polystyrene results have higher precision than previous studies.

Shocked CH and CH$_2$ become reflective at 1 to 2 Mbar

• Reflectivity measurements are needed for temperature calculations

Expected behavior of dielectrics undergoing insulator-conductor transition.
The measured brightness temperatures are consistent with models; but differences among models are too small to be discerned.

This provides a complete EOS of CH and CH₂.
Preliminary data on Ge-doped GDP displays softer behavior than most models.
Double Shock

Shock transit into a higher impedance material results in a reflected shock.

Graphical Representation

- **Sample** and **Standard** materials are depicted with different pressures and particle velocities.
- **Intersection** yields the pressure and particle velocity in the sample.
- **Possible shock states** in the sample are indicated.
- **Reshock** and **Initial state** are marked.

Equation

- \(P = \rho_0 U_s U_p \)
- \(P = \rho_0 U_s' U_p \)

Legend

- **Sample principal hugoniot**
- **Pressure** (Mb)
- **Particle velocity, \(u_p \) (\(\mu m/\text{ns} \))
Reflected shocks are used to create double shock states in CH

Small differences in models are amplified using reshock to move off the Hugoniot.
Polystyrene (CH) double-shock data are in agreement with single-shock results
Precision equation-of-state (EOS) measurements are obtained on various polymers at 1 to 10 Mbar

- Precise knowledge of ablator EOS is required for ICF target designs
 - some NIF target designs use Ge-doped GDP
- Laser-driven shock waves produce EOS data using the impedance-matching (IM) method
- CH data allows for model discrimination, favoring SESAME 7592
 - mild softening is not accounted for between 2 to 4 Mbar
 - single- and double-shock results display similar behavior
- Stoichiometry effects between CH and CH$_2$ are well-predicted by models
- EOS data for NIF ablator material was acquired
Inclusion of a softer α-quartz EOS produces ~0.2% to 6.0% difference in polystyrene density values.