Numerical Investigation of Initial Low-Adiabat OMEGA Polar-Drive Implosions

Saturn target

Ring improves equatorial drive

A. Shvydky
University of Rochester
Laboratory for Laser Energetics

50th Annual Meeting of the American Physical Society
Division of Plasma Physics
Dallas, TX
17–21 November 2008
Concurrence of measured and simulated framed x-ray radiographs demonstrate control of OMEGA low-adiabat polar-drive* implosion symmetry

- Work continues on the verification of the NIF polar-drive (PD) ignition design on OMEGA.
- Earlier experiments optimizing high-adiabat PD implosions were successful in recovering the yield of symmetric implosions done with identical targets.
- Improved numerical sliding-grid algorithm allows better resolution around the Saturn ring and at the ablation surface within the target.
- Experiments are being designed that will demonstrate that low-adiabat PD implosions recover symmetric-illumination yields.

Related Talk:
F. J. Marshall (NO5.00001).
Collaborators

P. W. McKenty
F. J. Marshall
I. V. Igumenshchev
R. Epstein
J. A. Marozas
R. S. Craxton
T. C. Sangster
S. Skupsky
R. L. McCrory

University of Rochester
Laboratory for Laser Energetics
Previously high-adiabat PD experiments on OMEGA achieved near-symmetric-illumination yields*

Square laser pulse
\(~15 \text{ kJ}, \alpha \sim 7\ to \ 8\)

\begin{align*}
\text{Laser power (TW)} & \quad \text{Time (ns)} \\
15 & \quad 0.5 \quad 1.0 \quad 1.5 \\
0 & \quad 0 \\
\end{align*}

\begin{align*}
\text{Saturn ring radius scan} & \quad \text{Fraction of symmetric yield} \\
0.9 \quad 1.1 \quad 1.3 \quad 1.5 & \quad 0.00 \quad 0.25 \quad 0.50 \quad 1.00 \\
\text{Saturn ring radius (mm)} & \quad 0 \quad 10^9 \quad 10^10 \quad 10^{11} \\
\text{Standard target } D_2 \text{ yields} & \quad \text{Shell thickness (\textmu m)} \\
14 \quad 18 \quad 22 & \quad 0 \quad 10^9 \quad 10^{10} \\
\end{align*}

Initial low-adiabat PD experiments were performed with two-beam repointing configurations.

LA1501 laser pulse
~13 kJ, $\alpha \sim 3$

X-ray framing camera, $\theta_V = 63^\circ$

<table>
<thead>
<tr>
<th>Ring</th>
<th>Pointing 1 offset</th>
<th>Pointing 2 offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δr_1</td>
<td>90 μm</td>
<td>90 μm</td>
</tr>
<tr>
<td>Δr_2</td>
<td>150 μm</td>
<td>120 μm</td>
</tr>
<tr>
<td>Δr_3</td>
<td>150 μm</td>
<td>120 μm</td>
</tr>
</tbody>
</table>
Eulerian 2-D DRACO simulations with 3-D laser ray trace resolve plasma flow and laser refraction around the ring

- High-resolution Godunov-type scheme
- Nonuniform spherical grid with improved sliding-grid algorithm
- Multigroup radiation-diffusion transport

Mass density (log scale)

![Mass density plot]

$X (\mu m)$

$Z (\mu m)$

$t = 800$ ps
The first beam-pointing case (90, 150, 150-\(\mu\)m offset) is more appropriate for driving standard PD targets.

OMEGA shot 49331 standard target

- \(t = 2.21\) ns
- \(2.40\) ns
- \(2.46\) ns

DRACO/Spect3D

- \(t = 2.40\) ns
- \(2.60\) ns
- \(2.70\) ns

400 \times 400-\(\mu\)m regions

Ti backlit images (~4.7 keV)

View angle \(\theta_v = 63^\circ\)

Opacity

- \(-1\) to 2
- (<0 is emission)

Mass density at peak of UV production (DRACO)

TC8375

Spect3D: Prism Computational Sciences, Inc., Madison, WI
The first beam-pointing case (90, 150, 150-\(\mu m\) offset) overdrives the Saturn target equator, producing a prolate implosion.

OMEGA shot 49333 Saturn target

\(t = 2.27\) ns 2.51 ns 2.57 ns

DRACO/Spect3D

\(t = 2.35\) ns 2.63 ns 2.70 ns

400 \(\times\) 400-\(\mu m\) regions
Ti backlit images (~4.7 keV)
View angle \(\theta_v = 63^\circ\)

Mass density at peak of UV production (*DRACO*)

Opacity

\(<0\) is emission

\(\rho\) (g/cm\(^2\))

Spec3D: Prism Computational Sciences, Inc., Madison, WI
The second beam-pointing case (90, 120, 120-μm offset) underdrives the standard target equator, producing an oblate implosion.
The second beam-pointing case (90, 120, 120-μm offset) produces a more-uniform Saturn target implosion.
Summary/Conclusions

Concurrence of measured and simulated framed x-ray radiographs demonstrate control of OMEGA low-adiabat polar-drive* implosion symmetry

- Work continues on the verification of the NIF polar-drive (PD) ignition design on OMEGA.
- Earlier experiments optimizing high-adiabat PD implosions were successful in recovering the yield of symmetric implosions done with identical targets.
- Improved numerical sliding-grid algorithm allows better resolution around the Saturn ring and at the ablation surface within the target.
- Experiments are being designed that will demonstrate that low-adiabat PD implosions recover symmetric-illumination yields.

Related Talk:
F. J. Marshall (NO5.00001).