Modeling Observables to Diagnose Areal Density in OMEGA Implosions

Secondary proton spectrum
OMEGA cryogenic implosion; $\alpha \sim 2.5$

1. Burn truncation
2. Timing
3. Multidimensional ρR variations

P. B. Radha
University of Rochester
Laboratory for Laser Energetics

50th Annual Meeting of the American Physical Society
Division of Plasma Physics
Dallas, TX
17–21 November 2008
Good agreement between measured and simulated areal densities are obtained when non-ideal implosion effects are included.

- Areal density depends crucially on shock timing, preheat, and equation of state.

- Nonuniformities result in burn truncation.
 - preferentially sampling early-time areal density making observed values lower than 1-D simulation by 10 to 20%

- With increasing intensities, sampling effects alone cannot explain the observed degradation in areal densities in OMEGA implosions.

- Shock-timing experiments* indicate that shock mistiming may account for degraded areal densities in cryogenic implosions.

* T. R. Boehly (Q1.00003)
 V. N. Goncharov (TO5.00006)
 V. A. Smalyuk (BI1.00006)
Collaborators

University of Rochester
Laboratory for Laser Energetics

J. A. Frenje, C. K. Li, and R. D. Petrasso

Plasma Science and Fusion Center
Massachusetts Institute of Technology

D. Shvarts

Nuclear Research Center, Negev, Israel
Areal density is the only implosion observable that provides information on the shell adiabat

\[\rho R_{\text{max}} = \frac{2.6 (E_L)^{0.33} V_{\text{imp}}^{0.04}}{\alpha^{0.55}} \]

\[\alpha = \frac{P}{P_F}; \quad E_L = \text{laser energy} \]
\[V_{\text{imp}} = \text{implosion velocity} \]

\(^1\text{R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).}\)
Preferential sampling of the areal density due to burn truncation can produce apparent degradation of observed areal densities.

<table>
<thead>
<tr>
<th>Simulated ρR</th>
<th>182 mg/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred ρR</td>
<td>138 mg/cm2</td>
</tr>
</tbody>
</table>

OMEGA cryogenic implosions
Offset <30 μm
Preferential sampling of the areal density due to burn truncation can produce apparent degradation of observed areal densities.

Simulated $\rho R = 182 \text{ mg/cm}^2$

Inferred $\rho R = 138 \text{ mg/cm}^2$

OMEGA cryogenic implosions
Offset <30 μm

Primary neutron yield ($Y_{\text{expt}}/Y_{\text{1-D}}$) %

Simulated neutron arrival time
Observed neutron arrival time
Simulated areal density
Better agreement between simulation and observation is obtained when burn truncated is included.
The low-energy tail in the secondary proton spectrum is due to nonuniformities in the compressed shell.

DRACO simulation; $\alpha \sim 2.5$

11-\(\mu\)m offset; 3.0-\(\mu\)m rms

- Burn truncation is included in the secondary spectrum calculations.
Including the effects of burn truncation gives better agreement with experiment.

OMEGA cryogenic implosions
Offset <30 μm; $\alpha \sim 2$–4

- **Simulated ρR (mg/cm²)**
- **Observed ρR (mg/cm²)**

- **Multiple-picket laser pulse**
- **Continuous laser pulse ($I > 5 \times 10^{14}$ W/cm²)**
- **Continuous laser pulse ($I < 5 \times 10^{14}$ W/cm²)**

*V. N. Goncharov (TO5.00006)
V. A. Smalyuk (BI1.00006)*
Including the effects of burn truncation gives better agreement with experiment

OMEGA cryogenic implosions
Offset <30 μm; α ~ 2–4

Observed ρR (mg/cm²) vs. Simulated ρR (mg/cm²)

Power (TW) vs. Time (ns)

Δ Multiple-picket laser pulse
◆ Continuous laser pulse (I > 5 × 10¹⁴ W/cm²)
◆ Continuous laser pulse (I < 5 × 10¹⁴ W/cm²)

*I. N. Goncharov (To5.00006)
V. A. Smalyuk (Bi1.00006)
Including the effects of burn truncation gives better agreement with experiment

OMEGA cryogenic implosions
Offset <30 μm; α ~ 2–4

- Multiple-picket laser pulse
- Continuous laser pulse ($I > 5 \times 10^{14}$ W/cm²)
- Continuous laser pulse ($I < 5 \times 10^{14}$ W/cm²)

*V. N. Goncharov (TO5.00006)
V. A. Smalyuk (BI1.00006)
Summary/Conclusions

Good agreement between measured and simulated areal densities are obtained when non-ideal implosion effects are included.

- Areal density depends crucially on shock timing, preheat, and equation of state.

- Nonuniformities result in burn truncation.
 - preferentially sampling early-time areal density making observed values lower than 1-D simulation by 10 to 20%

- With increasing intensities, sampling effects alone cannot explain the observed degradation in areal densities in OMEGA implosions.

- Shock-timing experiments* indicate that shock mistiming may account for degraded areal densities in cryogenic implosions.

* T. R. Boehly (QI1.00003)
V. N. Goncharov (TO5.00006)
V. A. Smalyuk (BI1.00006)