Fast-Electron Energy Deposition
In Solid-Density Plasmas

High-Speed X-Ray Streak Camera Data

Signal (arbitrary units)

Time (ps)

Bulk $T_e > 200$ eV
18 ps

5-J, 1-ps; 10^{19} W/cm2
Copper-foil targets

P. M. Nilson
University of Rochester
Laboratory for Laser Energetics

50th Annual Meeting of the
American Physical Society
Division of Plasma Physics
Dallas, TX
17–21 November 2008
Summary

Two intense x-ray flashes are resolved from isochorically heated foils in the high-energy-density limit.

- The first x-ray flash is caused by fast-electron-induced bremsstrahlung and K-photon emission.
- Thermal radiation from the rapidly heated target bulk causes the second x-ray flash.
- The lag time between the two x-ray flashes is sensitive to the fast-electron temperature.

Dual x-ray flashes provide a stringent test for energy-coupling models.
Collaborators

University of Rochester
Laboratory for Laser Energetics

J. S. Green, K. Lancaster, and P. A. Norreys

STFC, Rutherford Appleton Laboratory
Chilton, Didcot, Oxon, UK

F. Beg*

Center for Energy Research
University of California at San Diego

R. Stephens*

General Atomics, San Diego

M. Key*

Lawrence Livermore National Laboratory
Livermore, CA

*also at Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics, University of Rochester
†also at Mechanical Engineering and Physics Department, University of Rochester
Fast-electron refluxing in small-mass targets allows access to high-energy-density phenomena

- Refluxing is caused by Debye-sheath field effects1,2
- Majority of fast electrons are stopped in the target
- Provides a simple geometry for testing laser-coupling, electron-generation, and target-heating models3,4

$E \approx 10^{12} \text{ V/m}$

20 to 500 μm

\begin{itemize}
 \item 10^{19} W/cm2
 \item 2 to 20 μm
\end{itemize}

1S. P. Hatchett \textit{et al.}, Phys. Plasmas 7, 2076 (2000).
The LLE ultrafast x-ray streak camera time-resolves the x-ray emission

MTW Laser: 5 J, 1 ps; 10^{19} W/cm2

- Streak camera specifications:
 - 10 lp/mm spatial resolution
 - 2-ps temporal resolution
 - KBr photocathode
 - filtered sensitivity > 1 keV

HOPG spectrometer

Single-hit spectrometer

500 x 500 x 20 μm3

100 x 100 x 2 μm3

Time

Single flash

50 ps

Double flash
A “double-flash” of radiation >1 keV is observed as the target volume is reduced.

- Bremsstrahlung and K-photon emission dominate in the cold limit.
- As target volume reduces, the plasma energy density increases.
The fast-electron lifetime is governed by collisions with thermal electrons and adiabatic ion-front expansion.

- 1-D energy relaxation model*
 - electron-electron collisions
 - adiabatic expansion cooling
- Initially cold, 20-μm-thick copper foil
- Fast-electron-energy loss causes heating to tens of electron volts

High bulk-electron temperatures in small mass targets are confirmed by K-photon spectroscopy

- Inelastic electron-electron collisions heat the target
- Collisional ionization with the thermal background occurs
- L- and M-shell depletion at high bulk-electron temperatures causes spectral line shifts* and K_B/K_α suppression**

Two x-ray flashes are resolved from targets that are heated to the highest bulk-electron temperatures

- The first x-ray flash is induced by fast electrons losing energy in initially cold target material.
- The second x-ray flash is a finite-time isochoric heating effect not observable in the cold material limit.
- Thermal emission > 1 keV is consistent with the inferred bulk-electron temperatures.

Summary/Conclusions

Two intense x-ray flashes are resolved from isochorically heated foils in the high-energy-density limit

- The first x-ray flash is caused by fast-electron-induced bremsstrahlung and K-photon emission.
- Thermal radiation from the rapidly heated target bulk causes the second x-ray flash.
- The lag time between the two x-ray flashes is sensitive to the fast-electron temperature.

Dual x-ray flashes provide a stringent test for energy-coupling models.