Optical Properties of Materials at High Pressure Using “Sandwich” Targets

D. E. Fratanduono
University of Rochester
Laboratory for Laser Energetics

50th Annual Meeting of the American Physical Society
Division of Plasma Physics
Dallas, TX
17–21 November 2008
High pressure optical properties provide information regarding transport and relaxation phenomena

- Reflectivity of materials changes as pressure increases
 - broadening of the band gap
 - reduction in relaxation time due to increase in density

- Increase in temperature causes the reflectivity to decrease
 - phonon generation reducing the relaxation time

- The reflectivity of aluminum, gold, iron, and titanium exhibit similar behavior.

- Initial aluminum reflectivity data may be compromised.

- Absorption due to LiF window is minimal.
Collaborators

M. A. Barrios
T. R. Boehly
D. D. Meyerhofer
T. J. B. Collins

University of Rochester
Laboratory for Laser Energetics

D. G. Hicks
P. M. Celliers
S. Wilks
R. Smith

Lawrence Livermore National Laboratory
Thin material layers make it possible to study the optical properties at high pressure.

LiF remains transparent at pressures less than 6 Mbar.
Multiple pressures are produced by stacked 3-ns laser pulse.
VISAR image contains both pressure and reflectivity data

Al ($R = 93\%$)

Au ($R = 77\%$)

Diamond

LiF

VISAR-2 shot 50552

Time (ns)

Pressure (Mbar)

0 2 4 6 8 10 12 14

0 1 2 3 4 5

-2 0 2 4 6 8 10

0 500

0 500

μm
Temperature increases gradually until the shock coalesces.
The reflectivity of gold, aluminum, titanium, and iron exhibit similar behavior.
Changes in temperature and pressure affect material reflectivity and conductivity

<table>
<thead>
<tr>
<th>Reflectivity</th>
<th>Index of refraction</th>
<th>Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R = \left</td>
<td>\frac{n - n_0}{n + n_0} \right</td>
<td>^2]</td>
</tr>
</tbody>
</table>

Increase in conductivity

- Band broadening

Decrease in conductivity

- Increase in phonon density

\[n_s \approx \frac{k_B T}{\hbar \omega_s} \text{ for } T \gg T_D \]

\[\tau \downarrow \text{ for } T \uparrow \]

- Increase in density reduces mean-free path and \(\tau \)

- \(k_B T \) increases current carrying electrons

\(a_0 = \text{interatomic spacing} \)
Observed reflectivity of warm dense aluminum differs from current models

Model: conductivity of aluminium at 532 nm

Experiments show little absorption due to LiF window

Radiation balance

\[1 = T + \alpha + R \]

\(R < 2\% \) for shock pressures below 6 Mbar*

![Graph showing normalized reflectivity over time for shock pressures]

Optical properties provide information regarding transport and relaxation phenomena

- Reflectivity of materials changes as pressure increases
 - broadening of the band gap
 - reduction in relaxation time due to increase in density

- Increase in temperature causes the reflectivity to decrease
 - phonon generation reducing the relaxation time

- The reflectivity of aluminum, gold, iron, and titanium exhibit similar behavior.

- Initial aluminum reflectivity data may be compromised.

- Absorption due to LiF window is minimal.
Gold layer prevents preheat from affecting optical properties