Demonstration of Shock-Timing Techniques for Ignition Targets

T. R. Boehly
University of Rochester
Laboratory for Laser Energetics

50th Annual Meeting of the American Physical Society
Division of Plasma Physics
Dallas, TX
17–21 November 2008
Summary

OMEGA experiments have demonstrated the technique for timing shock waves on the NIF

- Ignition targets use a precisely timed sequence of shocks to condition the capsule.
- These will be timed to ±50 ps using optical diagnostics in surrogate targets.
- Various issues associated with this technique were studied and resolved with OMEGA experiments.

Cryogenic hohlraum and direct-drive target experiments show this technique meets NIF requirements.
The success of these experiments is the result of collaboration of four laboratories

V. N. Goncharov, D. Fratanduono, M. Barrios, S. X. Hu, T. C. Sangster, and D. D. Meyerhofer
Laboratory for Laser Energetics
University of Rochester

D. Munro, P. M. Celliers, D. G. Hicks, H. F. Robey, G. W. Collins, and N. Landen
Lawrence Livermore National Laboratory

R. E. Olson
Sandia National Laboratories

A. Nikroo
General Atomics

OMEGA Operations
OMEGA Target Fab
LLNL Shock Physics
SNL Target Fab
GA Target Fab
Motivation

Ignition targets use precisely timed multiple shocks to approximate an isentropic compression.
Ignition targets use precisely timed multiple shocks to approximate an isentropic compression.
Motivation

Ignition targets use precisely timed multiple shocks to approximate an isentropic compression.
Ignition targets use precisely timed multiple shocks to approximate an isentropic compression.
Ignition targets use precisely timed multiple shocks to approximate an isentropic compression.
Tuning experiments will adjust the drive to produce optimal timing: a tight sequence of shock arrivals.

- First three shocks ±50 ps
- Fourth shock ±100 ps
Meet these requirements with separate target types and campaigns.
Surrogate Targets

Shock-timing measurements in direct- and indirect-drive targets use re-entrant cones

Direct-drive configuration
- Drive beams
- CH shell
- Au cone
- Liquid D₂

Indirect-drive configuration
- Keyhole target
- Be shell
- Au cone
- Liquid D₂

Capsules IET

<table>
<thead>
<tr>
<th>Capsules IET</th>
<th>FY09</th>
<th>FY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIF tuning experiments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuning of shock 1-3 timing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LLE, LLNL, SNL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental readiness review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of shocks 1–3 timing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify shocks 1–3 launch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time and laser step strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for 1st ignition attempt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Velocity Interferometer System for Any Reflector
Various issues were resolved to demonstrate the shock-timing technique for NIF

Issues
- Surrogacy to ignition targets
- Ionization blanking of the window
- Secondary hohlraum
- Effect of D\textsubscript{2} column
- Convergence effects

Hard x rays from laser spots can blank diagnostic window
The velocity interferometer system for any reflector (VISAR) detects Doppler shifts to measure velocity.

\[\Delta \Phi(t) = \frac{4\pi}{\lambda_0} n \int_{t}^{t+\tau} U_s(t') dt' \]

VISAR has time resolution <30 ps and a velocity precision of ~1%.
Shock velocities are readily measured in transparent targets but “blanking” can be a problem.

![Diagram showing shock waves and measurements](image)

Velocity Interferometer System for Any Reflector
Halbraum experiments were used to select window material and optimize target design.

- Liquid D_2
- M-band
- Quartz “anvil”
- VISAR

Developments

- Quartz windows
 - high band gap
 - optical quality
 - strong/resilient

- Pellicle as spatial fiducial

- Small aperture; large distance to window
OMEGA Experiments

Open line-of-sight targets mimic the effect of NIF laser spots in keyhole targets

X-ray source area of concern

Low-angle beams

9 OMEGA beams at 60°

Quartz window

Aperture

3.5 mm

VISAR

10-μm Au

Be-Cu-Be ablator

E15114c
Stacked-pulse experiments show that neither instantaneous nor integrated flux is expected to be problematic.
Stacked-pulse experiments show that neither instantaneous nor integrated flux is expected to be problematic.
Stacked-pulse experiments show that neither instantaneous nor integrated flux is expected to be problematic.

Window test; No D₂

![Graph showing intensity and distance over time for window test with no D₂.](image)

- **Intensity (TW/cm²):**
 - Y-axis from 0 to 250
 - Intensity values include 0, 50, 100, 150, 200, 250

- **Time (ns):**
 - X-axis from 0 to 15
 - Time values include 0, 5, 10, 15

- **Distance (μm):**
 - Y-axis from -500 to 500
 - Distance values include 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500

- **Markers:**
 - Window
 - Ablator/aperture
 - OMEGA
 - NIF

![Graph showing time vs. distance for an ablator/aperture test.](image)
Warm hohlraum experiments with NIF-sized re-entrant cones demonstrate success at $T_{\text{rad}} = 180$ eV.
Liquid D₂ tuning experiments are good surrogates for ignition designs. D₂ to DT corrections are known and minor.
VISAR measurements were made in targets filled with liquid deuterium and driven at 135 eV.

VISAR and self-emission data show identical features. This meets NIF shock timing requirements.
OMEGA hohlraums produce “hard” x-ray fluxes that exceed those expected on the NIF.

OMEGA-scale hohlraums have higher laser-spot intensities than the NIF.
Windowless targets will make it possible to time the fourth rise (compression wave) at >220 eV
Various issues were investigated to demonstrate the shock-timing technique.

Issues
- Surrogacy to ignition targets ✔
- Ionization blanking of window ✔
- Secondary hohlraum ✔
- Effect of D₂ column ✔
- Convergence effects
The timing of multiple convergent shocks is studied using directly driven spheres with re-entrant cones.

- Cannot produce multiple shocks and the requisite radiation temperature in hohlraums on OMEGA.
Three spherically convergent shocks were observed in directly-driven cryogenic spherical targets.
The temporal features in self-emission data confirm shock-timing observed in VISAR data.
Summary/Conclusions

OMEGA experiments have demonstrated the technique for timing shock waves on the NIF

• Ignition targets use a precisely timed sequence of shocks to condition the capsule.

• These will be timed to ±50 ps using optical diagnostics in surrogate targets.

• Various issues associated with this technique were studied and resolved with OMEGA experiments.

Cryogenic hohlraum and direct-drive target experiments show this technique meets NIF requirements.