Parametric Study of Direct-Drive Fuel-Assembly Simulations of Fast-Ignition Cone-in-Shell Targets

K. S. Anderson
University of Rochester
Laboratory for Laser Energetics
Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics

50th Annual Meeting of the American Physical Society Division of Plasma Physics
Dallas, TX 17–21 November 2008
The performance of cone-in-shell fuel-assembly implosions is sensitive to cone geometry

- The temporal difference between cone-tip shock-breakout time (t_{sb}) and the time of 90% peak ρR (t_{90}) provides a good figure-of-merit for system performance ($\Delta t = t_{90} - t_{sb}$)
 - insensitive to cone opening angle (± 20 ps)
 - sensitive to cone-tip offset (± 50 ps)
 - very sensitive to cone-tip thickness (± 100 ps)

- Optimal cone geometry will be determined by integrated DRACO-LSP* simulations

* A. A. Solodov (YI1.00002).
Collaborators

A. A. Solodov,* R. Betti,* P. W. McKenty, and W. Theobald*

University of Rochester
Laboratory for Laser Energetics

*Fusion Science Center for Extreme States
of Matter and Fast-Ignition Physics
Multiparameter studies characterized the performance of OMEGA CD implosions for various cone-tip geometries.

- Parameters
 - cone angle (12° to 35° half angle)
 - cone-tip offset from target center (40 to 70 μm)
 - cone-tip thickness (5 to 25 μm)
The temporal difference (Δt) between the shock breakout on the inside of the cone tip (t_{sb}) and the time of 90% peak ρR (t_{90}) provides a good figure-of-merit for system performance ($\Delta t = t_{90} - t_{sb}$).

- Fast-electron beam should be injected before t_{sb}
- Variations in Δt in the parameter space show the effect of cone geometry on timing
Studies examine warm mass-equivalent targets emulating ignition-scaled OMEGA cryogenic cone-in-shell capsules.

\[E_L = 19.7 \text{ kJ} \]

\[\text{Adiabat, } \alpha = 1.2 \]
The shock-breakout time inside the cone tip has been measured experimentally.
Target performance is evaluated by measuring the delay between the shock-breakout time in the cone tip and the time of 90% of peak ρR

$t = t_{sb}$ represents the time the cone interior begins filling with plasma.
The shock-breakout time (t_{sb}) depends highly on cone-tip thickness, but only moderately on tip offset.
The shock-breakout time (t_{sb}) depends highly on cone-tip thickness; moderately on tip offset.

\[\Delta t = t_{90} - t_{sb} \]

- Cone-tip thickness (\(\mu m\))
- Cone-tip offset (\(\mu m\))
- Cone angle (\(^\circ\))

Graph showing the relationship between shock-breakout time and cone-tip offset and angle.
Integrated *DRACO-LSP* simulations indicate significant coupling of hot-electron energy to the fuel assembly.

Snapshots at $t = 6$ ps after the beginning of the e-beam

- **Plasma density (g/cm3)**
- **Electron-beam density ($\times 10^{21}$ cm$^{-3}$)**
- **Max. plasma temperature increase (keV)**
- **Azimuthal magnetic field (MG)**

55% of hot-electron energy couples to fuel assembly at density greater than 80 g/cc.

A. A. Solodov (Y1.00002).
Performance of cone-in-shell fuel-assembly implosions is sensitive to cone geometry

- The temporal difference between cone-tip shock-breakout time \(t_{sb} \) and the time of 90\% peak \(\rho R \) \(t_{90} \) provides a good figure-of-merit for system performance \(\Delta t = t_{90} - t_{sb} \)
 - insensitive to cone opening angle \(\pm 20 \text { ps} \)
 - sensitive to cone-tip offset \(\pm 50 \text { ps} \)
 - very sensitive to cone-tip thickness \(\pm 100 \text { ps} \)

- Optimal cone geometry will be determined by integrated \textit{DRACO-LSP} \(^* \) simulations

\(^*\text{A. A. Solodov (YI1.00002).}\)
Future Work

- Optimization of beam configuration with 3-D ray trace (in progress)

- Optimization of yield with integrated fast-electron transport on integrated LSP-DRACO simulations

- Cryogenic and ignition design studies
Target performance is highly dependent on the cone-tip thickness

\[\rho R_{sb} = \text{areal density at time of shock breakout in cone tip} \]
\[\rho R_{\text{max}} = \text{maximum areal density} \]

\[\rho R_{sb}/\rho R_{\text{peak}} \]