High-Brightness \sim 2$-keV Source Development for Backlighting of Cryogenic Implosions

C. Stoeckl et al.
University of Rochester
Laboratory for Laser Energetics

49th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
12–16 November 2007
Backlighting of cryogenic-implosion targets requires ultrashort x-ray flashes with a high spectral brightness.

- A spectral brightness of $\sim 60 \mu J/eV/ps/Sr$ of the backlighter at ~ 2 keV is required to overcome the target self-emission in cryogenic implosions.

- High-energy beams (up to 2.6 kJ) from OMEGA EP will be used at high intensity ($> 10^{18} \text{ W/cm}^2$) for backlighting.

- Short-pulse experiments with up to 500 J of energy show promising results, with measured spectral emissions up to 1.8 mJ/ev/Sr.

- Time-resolved spectroscopy is required to measure the spectral brightness without relying on assumptions of the emission time.
Collaborators

W. Theobald, P. A. Jaanimagi, P. M. Nilson, M. Storm, J. A. Delettrez, R. Epstein, and T. C. Sangster

Laboratory for Laser Energetics (LLE)
University of Rochester

J. Green, K. Lancaster, and P. A. Norreys

Rutherford Appleton Laboratory (RAL)

Lawrence Livermore National Laboratory (LLNL)
A backlighter spectral brightness of \(\sim 60 \, \mu \text{J/eV/ps/Sr} \) in the 2-keV spectral range is required for imaging.

- Simulations predict a self-emission of \(8 \, \mu \text{J/eV/ps/Sr} \) in the 2-keV range.
- Current cryogenic experiments show a self-emission of \(\sim 2 \, \mu \text{J/eV/ps/Sr} \).
- The simulation assumes, for the backlighter, a 3-keV Planckian spectrum filtered in the 2- to 2.2-keV spectral range.
Both flag-mounted and spider-web-mounted mass-limited targets were used in the experiments.

- Electron refluxing* in mass-limited targets could improve the conversion efficiency

*P. M. Nilson (YI2.00001)
Experiments were performed at three different laser facilities with energies up to 500 J.

<table>
<thead>
<tr>
<th>Facility</th>
<th>MTW</th>
<th>100 TW</th>
<th>PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td><10 J</td>
<td><100 J</td>
<td><500 J</td>
</tr>
<tr>
<td>Pulse</td>
<td>1 ps</td>
<td>10 ps</td>
<td>1 to 10 ps</td>
</tr>
<tr>
<td>Intensity (W/cm²)</td>
<td><10¹⁹</td>
<td>10¹⁹</td>
<td>>10²⁰</td>
</tr>
</tbody>
</table>
Al K-shell emission is observed between 6.2 Å and 8.2 Å on an x-ray CCD array.

Target: Al foil in spider web
Dimensions: 6 μm × 100 μm × 100 μm
Energy: ~400 J
Pulse: 10 ps
Intensity: ~1.6 × 10^{19} W/cm²
The radiated spectral energy density has been calculated from the measurements.

- Deposited radiation energy in one CCD pixel:
 \[E_{\text{pix}}(J) = \text{Signal(ADU)} \times \alpha(\text{eV/ADU}) \times (1.6 \times 10^{-19}) \]

- The CCD was calibrated with K\(\alpha\) emission: \(\alpha = (4.56\pm0.01)\) eV/ADU.
 \[\tilde{E}_{\text{source}}(\text{J/eV}) = \frac{E_{\text{pix}}(J) \left[1 + (\Delta \lambda_{\text{res/line}})^2 \right]^{1/2}}{\text{QE} \times T_{\text{filt}} \times \eta_{\text{cryst}} \times \eta_{\Delta \Omega} \times \Delta(\hbar \omega)_{\text{pix}}(\text{eV})} \]

- The quantum efficiency (QE) of a CCD is assumed to be 100%.
- The filter transmission, \(T_{\text{filt}}\), and the crystal diffraction efficiency \(\eta_{\text{cryst}}\) were taken into account.
- The solid angle \(\eta_{\Delta \Omega}\) was obtained from the rocking curve width.
- The spectral range per pixel is given by \(\Delta(\hbar \omega)_{\text{pix}}(\text{eV})\)
The Heα line is much brighter than the Kα line at these photon energies.

Target: Al foil in spider web
Dimensions: 6 μm \times 100 μm \times 100 μm
Energy: \sim400 J
Pulse: 10 ps
Intensity: \sim1.6 \times 10^{19} W/cm2
The emitted spectral energy \((\text{mJ/eV/Sr})\) is a function of the laser energy.
A 2-ps time-resolution, ultrafast x-ray streak has been developed and is being tested.

Specifications:
- 10 lp/mm spatial resolution
- 2-ps temporal resolution
- 0.5-ns and 2-ns streak window
- 10-ps rms trigger jitter
Summary/Conclusions

Backlighting of cryogenic-implosion targets requires ultrashort x-ray flashes with a high spectral brightness

- A spectral brightness of ~60 μJ/eV/ps/Sr of the backlighter at ~2 keV is required to overcome the target self-emission in cryogenic implosions.

- High-energy beams (up to 2.6 kJ) from OMEGA EP will be used at high intensity (>10^{18} W/cm²) for backlighting.

- Short-pulse experiments with up to 500 J of energy show promising results, with measured spectral emissions up to 1.8 mJ/ev/Sr.

- Time resolved spectroscopy is required to measure the spectral brightness without relying on assumptions of the emission time.