Two-Plasmon-Decay Instability Driven by Incoherent Laser Irradiation

University of Rochester
Laboratory for Laser Energetics

49th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
12–16 November 2007
Summary

The onset of TPD instability and preheat in direct-drive plasmas is strongly influenced by laser-beam incoherence

- The TPD driven by incoherent laser beams has a regime where the growth rate is determined by the overlapped laser-beam intensity.
- For parameters of laser–plasma interaction in OMEGA plasmas, the threshold of TPD depends on the interplay between
 - plasma inhomogeneity
 - wave damping
 - resonance detuning due to beam incoherence
- When the density scale length is large enough, the low-frequency density perturbations can reduce the TPD growth.
In OMEGA experiments, the hard x-ray production depends on the overlapped intensity of multiple incoherent laser beams.
The growth rate of the TPD instability can be proportional to the average laser intensity.

- Equation for the growth rate γ (in random phase approximation):

$$
\frac{2(\gamma + \gamma_e)}{\omega p_0} = -\text{Im} \int \frac{d\vec{k}_0}{k_0 \Delta \theta} \frac{\langle |v_0|^2 \rangle F(\vec{k}_0, \vec{k})}{2i(\gamma + \gamma_e)\omega p_0} - 3v_T^2 \left((\vec{k}_0 - \vec{k})^2 - (\vec{k}_0C - \vec{k})^2 \right)
$$

where $F(\vec{k}_0, \vec{k}) = \frac{(k_0^2 - 2\vec{k}_0 \vec{k})^2}{4[(\vec{k}_0 - \vec{k})^2 k^2]}$ and γ_e is the damping coefficient.

- Large resonance width: $(\gamma + \gamma_e) \ll \Delta \omega$

$$
\gamma + \gamma_e = \frac{\pi}{4} \frac{\langle |v_0|^2 \rangle F(\vec{k}_0C, \vec{k})}{\Delta \omega}
$$

$\Delta \omega = 3k_\Vert k_0 \lambda^2 D_e \sin \theta_c |\Delta \theta \omega p_0$
The increase of the angular width of an incoherent laser beam leads to the decrease of TPD growth rate and to the increase of the threshold.

\[\gamma_e/\omega_p = 10^{-3} \]

\[(\gamma + \gamma_e)/\omega_p \approx \sqrt{\langle I \rangle / I_0} \text{ at } \Delta \omega = 0 \]

Resonance width \[\Delta \omega/\omega_p = 3k_k_0 F_0^2 |\sin \theta_c| \Delta \theta \]
Thresholds of TPD in OMEGA plasmas are influenced by the density inhomogeneity scale

- Different studies* have shown that for TPD in inhomogeneous plasmas the absolute growth rate

\[
\left(\frac{\gamma}{\omega p_0}\right)_{\text{inhom}} = \left(\frac{\gamma}{\omega p_0}\right)_{\text{hom}} - \Delta_{\text{inhom}} - \left(\frac{\gamma_e}{\omega p_0}\right)
\]

\[\Delta_{\text{inhom}} \sim \frac{1}{k_0 L_N}\]

- For OMEGA plasmas the density scale length near quarter-critical density

\[L_N = (150-400) \mu m\]

- Low-frequency density perturbations can increase the effective damping

\[\gamma_e \sim \sqrt{(\delta N)^2} \sim \frac{1}{\gamma_{ia}}\]

For parameters of OMEGA plasmas, the TPD instability threshold is influenced by the interplay of several parameters:

- Homogeneous three-wave growth rate
 \[\gamma^0 = \frac{k_0 |V_0|}{\omega_{p0}} = 8.2 \times 10^{-3} \sqrt{I_{15}} \]

- Detuning due to beam incoherence
 \[\frac{\Delta \omega}{\omega_{p0}} = 2 \times 10^{-3} \left(\frac{T_e}{2 \text{ keV}} \right) \left(\frac{\Delta \theta}{0.2} \right) \sin \theta_c \]

- Plasma-wave damping
 \[\left(\frac{\gamma_e}{\omega_{p0}} \right)_{\text{coll}} = 0.5 \times 10^{-3} \left(\frac{Z}{5.3} \right) \left(\frac{T_e}{2 \text{ keV}} \right)^{3/2} \]

- Detuning due to inhomogeneity
 \[\frac{1}{k_0 L} = 4.2 \times 10^{-4} \left(\frac{L}{150 \mu m} \right) \]
In OMEGA experiments, the hard x-ray production depends on the overlapped intensity of multiple incoherent laser beams.

Experimental HXR

- Laser intensity (W/cm²) \(\times 10^{14} \)
- Emission (pC)

- Thin cryo ablator
- Thick cryo ablator
- Si-doped CH
- CH, CD
- Si-doped CH Threshold

TC8036a
Low-frequency perturbations in electron density are produced by the interaction of incoherent laser beams with plasmas.

\[\langle I \rangle = 9 \times 10^{14} \text{ W/cm}^2, \quad T_e = 2 \text{ keV}, \quad n_e = \frac{n_c}{4} \]

\[\left(\frac{n_e}{n_0} - 1 \right) \sim \frac{I}{\langle I \rangle} \]
The low-frequency perturbations in the electron density can detune the TPD resonance and reduce the TPD growth.

\[\langle I \rangle = 9 \times 10^{14} \text{ W/cm}^2, \quad \gamma_e/\omega_{p0} = 10^{-3} \]
Summary/Conclusions

The onset of TPD instability and preheat in direct-drive plasmas is strongly influenced by laser-beam incoherence

- The TPD driven by incoherent laser beams has a regime where the growth rate is determined by the overlapped laser-beam intensity.

- For parameters of laser–plasma interaction in OMEGA plasmas, the threshold of TPD depends on the interplay between
 - plasma inhomogeneity
 - wave damping
 - resonance detuning due to beam incoherence

- When the density scale length is large enough, the low-frequency density perturbations can reduce the TPD growth.