Rayleigh–Taylor Growth and Spherical-Compression Measurements of Silicon-Doped Ablators

\[\lambda = 30 \, \mu m \]

\begin{align*}
\text{OD modulation} & \quad \text{Time (ns)} \\
10^0 & \quad 0 \quad 1 \quad 2 \\
10^{-1} & \quad 0 \quad 1 \quad 2 \\
10^{-2} & \quad 0 \quad 1 \quad 2 \\
10^{-3} & \quad 0 \quad 1 \quad 2 \\
\end{align*}

\begin{align*}
\text{OD modulation} & \quad \text{Distance traveled (\mu m)} \\
100 & \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \\
10 & \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \\
1 & \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \\
\end{align*}

J. P. Knauer
University of Rochester
Laboratory for Laser Energetics

49th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
12–16 November 2007
Si doping reduces ablation-front RT growth

- Silicon doping reduces hard x rays from two-plasmon decay*
- 2-D hydrodynamic simulations of silicon-doped ablator experiments agree with the measured Rayleigh–Taylor (RT) growth
 - experiments with 3% Si-doped CH foils
 - experiments with 6% Si-doped ablators that are planar surrogates for cryogenic implosions
- Measured neutron yields from $\alpha = 2$ warm target implosions increase when silicon is added to the ablator

*P. B. Radha (JO3.00002), J. A. Delettrez (JO3.00003)
Collaborators

Laboratory for Laser Energetics
University of Rochester
Calculations show Si-doped ablators reduce number of fast electrons and RT growth at the ablation surface.

- Laser intensity
 \(I = 8 \times 10^{14} \text{ W/cm}^2 \)

- Calculated implosion velocity
 \(V_i = 3 \times 10^7 \text{ cm/s} \)

- TPD threshold parameter \((\eta)\) reduced

\[
\eta = \frac{I_{14} \cdot L_{\mu m}}{230 \cdot T_{\text{keV}}}
\]

- A high adiabat in the ablation region reduces RT growth.\(^2\)

Ablation-interface RT growth was measured for silicon-doped CH planar foils

- Imposed perturbations
 \[\lambda = 60 \, \mu m \]
 \[a_0 = 0.25 \, \mu m \]
 (0.5 \, \mu m p–v)

 \[\lambda = 30 \, \mu m \]
 \[a_0 = 0.125 \, \mu m \]
 (0.25 \, \mu m p–v)

Minimized initial shock wave constant acceleration pulse shape
2-D simulations for undoped and Si-doped targets agree with the experimental data.

Ablation-interface RT growth in reduced for 30-μm-wavelength perturbations when Si is added to the CH.
Current planar-RT experiments are surrogates for spherical cryogenic target implosions

- Imposed perturbations
 \[\lambda = 30 \, \mu m \]
 \[a_0 = 0.25 \, \mu m \]
 \[(0.5 \, \mu m \, p-v) \]

 \[\lambda = 120 \, \mu m \]
 \[a_0 = 1.0 \, \mu m \]
 \[(2.0 \, \mu m \, p-v) \]

- RF foam
 \[\rho = 180 \, mg/cc \]

- 6% Si-doped CH
Perturbation amplitudes calculated by 2-D hydrodynamic simulations agree with the measured amplitudes.
Perturbation amplitudes calculated by 2-D hydrodynamic simulations agree with the measured amplitudes.
Perturbation amplitudes calculated by 2-D hydrodynamic simulations agree with the measured amplitudes.
Neutron yields and absolute x-ray intensities were measured with spherical target implosions.
The measured neutron yields become closer to simulation as Si thickness is increased.
The measured neutron yields become closer to simulation as Si thickness is increased.

Measured neutron yield for $\alpha = 2$ implosions increases when 3 μm of Si doped CH is added to the ablator.
Summary/Conclusions

Si doping reduces ablation-front RT growth

- Silicon doping reduces hard x rays from two-plasmon decay*
- 2-D hydrodynamic simulations of silicon-doped ablator experiments agree with the measured Rayleigh–Taylor (RT) growth
 - experiments with 3% Si-doped CH foils
 - experiments with 6% Si-doped ablators that are planar surrogates for cryogenic implosions
- Measured neutron yields from $\alpha = 2$ warm target implosions increase when silicon is added to the ablator

*P. B. Radha (JO3.00002), J. A. Delettrez (JO3.00003)