Development of Shock-Timing Techniques for the National Ignition Facility

T. R. Boehly et al.
University of Rochester
Laboratory for Laser Energetics

49th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
12–16 November 2007

VISAR Data

Shock in D₂
OMEGA experiments have validated the shock-timing technique planned for the NIF

- Ignition targets require precise timing (±50 ps) of the first three shocks for optimal performance

- Optical measurements (VISAR and self-emission) can readily achieve that precision when $T_{\text{rad}} = \sim 170$ eV and $I_{\text{wall}} = 100$ TW/cm2

- OMEGA experiments have demonstrated that optical shock-timing measurements can be performed at and above NIF-relevant x-ray loading (at 1.5 to 4 keV)

- Cryogenic hohlraum experiments on OMEGA have validated the shock-timing technique under NIF-like conditions
Collaborators

M. A. Barrios, D. E. Fratanduono, T. C. Sangster, and D. D. Meyerhofer

Laboratory for Laser Energetics
University of Rochester

P. M. Celliers, D. Munro, G. W. Collins, and O. L. Landen

Lawrence Livermore National Laboratory

R. E. Olson

Sandia National Laboratories
Indirect-drive-ignition capsules use four shocks to achieve ignition

- First three shocks ±50 ps
- Fourth shock ±100 ps
NIF shock timing will be measured through a cone that penetrates the hohlraum and the sphere inside.

Hard x rays from laser spots can blank diagnostic window.
Stacked-pulse experiments show that neither instantaneous nor integrated flux are expected to be problems.
Hohlraum experiments with NIF-sized re-entrant cones demonstrate success at 180 eV
The success of these experiments resulted from a collaboration of four labs for design, construction, fielding

- Parts from GA and LLNL
- Hohlraum-cone assembly at SNL
- Shields and cryo mount at LLE
Cryogenic keyhole target with “thick” ablator succeeded at 135 eV

Hohlraum: 1.6-mm ID 2.55-mm 3/4 LEH 25-μm gold wall

VISAR-2 shot 48881

Distance (μm)

Time (ns)

Au wall
Aperture
Shock in D₂
Au wall
Self-emission agree well with the VISAR shock breakout time—shock arrival at the aperture is also observed.
OMEGA hohlraums produce “hard” x-ray fluxes that are relevant to (or exceed) those expected on the NIF.

OMEGA-scale hohlraums have higher laser-spot intensities than the NIF.
Summary/Conclusions

OMEGA experiments have validated the shock-timing technique planned for the NIF

- Ignition targets require precise timing (±50 ps) of the first three shocks for optimal performance

- Optical measurements (VISAR and self-emission) can readily achieve that precision when $T_{\text{rad}} \approx 170$ eV and $I_{\text{wall}} = 100$ TW/cm2

- OMEGA experiments have demonstrated that optical shock-timing measurements can be performed at and above NIF-relevant x-ray loading (at 1.5 to 4 keV)

- Cryogenic hohlraum experiments on OMEGA have validated the shock-timing technique under NIF-like conditions
The cryogenic vacuum hohlraum exhibits decreased radiation temperatures compared to warm ones.