Measurable Lawson Criterion and Hydro-Equivalent Curves for Inertial Confinement Fusion

R. Betti and C. D. Zhou
University of Rochester
Fusion Science Center and
Laboratory for Laser Energetics

49th Annual Meeting of the
American Physical Society
Division of Plasma Physics
Orlando, FL
12–16 November 2007
The ignition condition is derived in terms of two parameters ($\langle T_i \rangle_n$ and total $\langle \rho R \rangle_n$) that can be directly measured in ICF implosions.

- This new form of the Lawson’s criterion is used to determine how close to ignition OMEGA’s cryogenic implosions are currently performing.

- Hydro-equivalent curves in the $(\rho R, T_i)$ plane show how current OMEGA implosions perform when scaled up to the NIF.

- The conventional relation hot-spot $\rho R \sim 0.3$ g/cm2, $T_i \sim 10$ keV does not correctly reproduce the ignition conditions.
The hot-spot ignition condition is given by the balance of alpha heating with the energy losses, including the expansion losses.

\[\frac{\dot{E}_{\text{hs}}}{E_{\text{hs}}} = \frac{1}{\tau_{\alpha}} - \frac{1}{\tau_{\text{rad}}} - \frac{1}{\tau_{\text{exp}}} > 0 \]

\[1/\tau_{\alpha} \sim n_{\text{hs}}^2 \langle \sigma v \rangle / P_{\text{hs}} \quad \text{Alpha heating} \]

\[1/\tau_{\text{rad}} \sim n_{\text{hs}}^2 \sqrt{T_{\text{hs}}} / P_{\text{hs}} \quad \text{Radiation cooling} \]

\[1/\tau_{\text{exp}} \sim \sqrt{\dot{R}_{\text{hs}} / R_{\text{hs}}} \quad \text{Expansion} \]

\[M_s \dot{R}_{\text{hs}} = 4\pi P_{\text{hs}} R_{\text{hs}}^2 \quad \text{shell Newton's law} \]
The expansion losses represent the internal energy lost by the hot spot and transferred to the surrounding dense shell as kinetic energy.

\[
\frac{1}{\tau_{\text{exp}}} \sim \sqrt{\frac{\ddot{R}_{\text{hs}}}{R_{\text{hs}}}} \quad \text{Expansion}
\]

\[
M_s \ddot{R}_{\text{hs}} = 4\pi P_{\text{hs}} R_{\text{hs}}^2 \quad \text{Shell Newton’s law}
\]

\[
M_s \sim \rho_s \Delta_s R_s^2 \quad \Delta_s = \text{shell thickness}
\]

\[
\frac{1}{\tau_{\text{exp}}} \sim \sqrt{\frac{P_{\text{hs}} R_{\text{hs}}}{M_s}} \quad \text{Shell mass}
\]
The ignition condition depends on shell areal density, implosion velocity, and hot-spot ion temperature.

Hot-spot pressure and temperature

\[\frac{P_{hs}}{R_{hs}} M_s f(T_i)^2 > \text{const} \]

Hot-spot radius \quad Shell mass

- \(P_{hs} \sim \left(\frac{P_{hs} R_s^3}{R_s^3} \right) \sim \left(\frac{M_s V^2}{R_s^3} \right) \)
- \(M_s \sim \rho_s \Delta_s R_s^2 \)
- \(R_s \sim R_{hs} \)

\[f(T) \sim T_i \left[1 - \left(\frac{T_{\text{brem}}}{T_i} \right)^{2.5} \right] \]

for \(4 < T_i < 13 \) \(T_{\text{brem}} \leq 4.4 \) keV

Shell areal density \quad Implosion velocity
Eliminating the velocity and energy leads to an ignition condition depending on shell areal density and hot-spot ion temperature:

\[V \sim T_i^{0.8} \alpha_{if}^{0.15} E_L^{0.056} \]

\[E_L \sim (\rho_s \Delta_s)^3 \alpha_{if}^{1.75} V^{-0.18} \]

\[(\rho \Delta) T_i^{2.1} \alpha_{if}^{0.03} \left[1 - (T_{brem}/T_i)^{2.5} \right]^{1.2} > \text{const} \]

\(^1\text{C. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).}\)
The simple scaling relation compares favorably with a set of simulations of marginally ignited capsules.

Scaling

$$(\rho_s \Delta_s) T_i^{2.1} \left[1 - \left(\frac{T_{\text{brem}}}{T_i} \right)^{2.5} \right]^{1.2} > \text{const}$$

1-D LILAC → simulations

Gain = 1

$$\langle \rho R \rangle_n \left(\frac{\langle T_i \rangle_n}{4} \right)^{1.4} \left[1 - \left(\frac{2.6}{\langle T_i \rangle_n} \right)^{2.5} \right]^{0.37} > 1 \text{ g/cm}^2$$

- Simulations are carried out for $1 < \alpha_{if} < 5$ and $2 \times 10^7 < V_j < 5.5 \times 10^7 \text{ cm/s.}$
The T_i and total ρR from simulations of marginally ignited capsules lay on a single curve; a measurable Lawson’s criterion depends on burn average T_i and total ρR.

The graph shows the relationship between the neutron-average ion temperature without alpha deposition $\langle T_i \rangle_n^{\text{no alpha}}$ and the neutron-average areal density $\langle \rho R \rangle_n$. The ignition domain is highlighted, with sub-ignited $T \approx T$ (no alpha) and ignition and gain $\langle T_i \rangle_n = 1$ indicated. The graph includes 1-D simulations data points.
Hydro-equivalent curves on the \((\rho R, T_i)\) show how close current OMEGA cryogenic implosions are to ignition and how they perform when scaled up to the NIF.

Using the scaling relations for \(\rho R\) and \(T_i\), hydro-equivalent curves are plotted versus laser energy for fixed values of the implosion velocity and in-flight adiabat.

\[
(\rho_s \Delta_s) \sim E_L^{0.33} \alpha_{if}^{-0.55} V^{0.06} \\
T_i \sim V^{1.25} \alpha_{if}^{-0.19} E_L^{0.07}
\]

- **Ignition and Gain**
- **NIF point design**
- **1-D marginal ignition**
- **OMEGA DD, 16 kJ 2007**
- \(\alpha_{if} = 2.5\)
- \(V = 2.5 \times 10^7\) cm/s
- **OMEGA DT equivalent of the NIF point design**
- **Hydro-equivalent curves**
 - \(V_i = 4 \times 10^7\) cm/s, \(\alpha_{if} = 2.5\)

TC8026
The condition for alpha particle confinement (hot-spot $\rho R \geq 0.3 \text{ g/cm}^2$) is always satisfied.

At low T_i, ignition requires hot-spot ρR well above 0.3 g/cm2.

Gain = 1
The ignition condition is derived in terms of two parameters \(\langle T_i \rangle_n \) and total \(\langle \rho R \rangle_n \) that can be directly measured in ICF implosions.

- This new form of the Lawson’s criterion is used to determine how close to ignition OMEGA’s cryogenic implosions are currently performing.

- Hydro-equivalent curves in the \((\rho R, T_i) \) plane show how current OMEGA implosions perform when scaled up to the NIF.

- The conventional relation hot-spot \(\rho R \sim 0.3 \text{ g/cm}^2, T_i \sim 10 \text{ keV} \) does not correctly reproduce the ignition conditions.