Fast-Ignition Fuel Assembly

Hot-spot ignition

\[P = P_{hs} = P_s \]

- \(T_i \)
- \(R_h \)
- \(\rho_h \)
- \(\rho_s \) shell
- \(\Delta_s \)
- \(R_s \)

Fast ignition

\[P = P_{hs} = P_s \]

- \(T_i \)
- \(R_h \)
- \(\rho_h \)
- \(\rho_s \) shell
- \(\Delta_s \)
- \(R_s \)

C. Zhou and R. Betti
University of Rochester
Laboratory for Laser Energetics

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
Summary

Scaling laws for fast-ignition fuel assembly are derived and used to design high-density and high-areal-density implosions

- High-density and high-areal-density capsules are optimized for fast-ignition implosions.

- Density depends on adiabat and implosion velocity. It is independent of driver energy.

- Areal density depends on adiabat and driver energy, and depends weakly on implosion velocity.

- Hot-spot temperature depends only on the implosion velocity.

- Low-adiabat, low-implosion-velocity cryogenic implosions on OMEGA can achieve areal densities up to 0.78 g/cm².
Energy gain increases for low-implosion velocity and high areal density

\[G = \frac{\theta E_f / m_{\text{ion}}}{V_i^2 / \eta_h} = \frac{\eta_h}{V_i^2} \frac{\theta}{E_f m_{\text{ion}}} \]

\[\theta = \frac{1}{1 + 7/\rho R} = \text{fraction burned} \]

\[m_i = \text{ion mass} \]

\[E_f = 17.5 \text{ MeV} \]

\[\eta_h = \text{hydrodynamic efficiency} \]

Gain formula \(\Rightarrow \)

\[G = \frac{73}{I_{15}^{0.25}} \left(\frac{3 \times 10^7}{V_i} \right)^{1.25} \left(\frac{\theta}{0.2} \right) \]

\[\eta_h^{\text{theory}} \sim V_i^{0.87} I_L^{-0.29} \]

\[\eta_h^{\text{fit}} = \frac{0.049}{I_{15}^{0.25}} \left(\frac{V_i (\text{cm/s})}{3 \times 10^7} \right)^{0.75} \]
Scaling laws relating stagnation properties to in-flight hydrodynamic variables are derived from conservation equations.

Hot-spot ignition

\[P = P_{hs} = P_s \]

\[\begin{align*}
 T_i & \quad \rho_s \Delta_s \\
 R_h & \quad \Delta_s \\
 \rho_h & \quad R_s
\end{align*} \]

Mass:
\[\rho_s \Delta_s \sim \frac{M_{sh}}{R_h \Sigma(A_s)} \sim \frac{E_k}{R_h^2 V_i^2 \Sigma(A_s)} \]

Energy:
\[E_k \sim P_s (R_h + \Delta_s)^3 \]

Entropy:
\[\alpha_s \sim \alpha_{if} \text{Mach}_{if}^{2/3} \]

Fast ignition

\[P = P_{hs} = P_s \]

\[\begin{align*}
 T_i & \quad \rho_s \Delta_s \\
 R_h & \quad \Delta_s \\
 \rho_h & \quad R_s
\end{align*} \]

Aspect ratio:
\[A_s = \frac{R_h}{\Delta_s} \]

Volume factor:
\[\Sigma(x) \equiv 1 + \frac{1}{x} + \frac{1}{3x^2} \]

Unknowns:
\[P_s, \rho_s, A_s, \Delta_s \]

R. Betti et al., Phys. Plasmas 9, 2277 (2002).
The stagnation aspect ratio decreases with lower implosion velocity.

\[A_s^{\text{sim}} = \frac{R_h}{\Delta_s} \]

\[A_s^{\text{fit}} = 2.1 \left(\frac{V_i (\text{cm/s})}{3 \times 10^7} \right)^{0.96} \]
The hot-spot temperature decreases with lower velocity

\[T_{\text{hot spot}}^{\text{(keV) fit}} = 7 \left(\frac{V_i (\text{cm/s})}{3 \times 10^7} \right)^{1.4} \alpha^{-0.04} \]
The areal density is dependent on adiabat and driver energy.

\[(\rho R)^{\text{theory}} \sim E_L^{0.33} \alpha_{\text{if}}^{-0.8} V_I^{0.03}\]

\[(\rho R)_{\text{max}}^{\text{fit}} = \frac{1.2}{\alpha^{0.57}} \left(\frac{E_L (\text{kJ})}{100} \right)^{0.33} \left(\frac{V_i (\text{cm/s})}{3 \times 10^7} \right)^{0.1}\]

Fast ignition requires large enough densities; the density depends on velocity and adiabat.

\[
\rho_s^{\text{theory}} \sim V_I^{1.4} \alpha_{if}^{-1.2}
\]

\[
\langle \rho \rangle_{\rho R}^{\text{fit}} = \frac{440}{\alpha^{1.03}} \left[\frac{V_i (\text{cm/s})}{3 \times 10^7} \right]^{0.93}
\]

The hydrodynamics of fast ignition depend on three parameters: gain, density, and areal density.

\[
\text{Gain} \sim V_i^{-1.25} (1 + 7/\rho R)^{-1} \Rightarrow \frac{743}{1 + 30/E_L^{1/3}} \text{(kJ)}
\]

\[
\rho R \sim E_L^{0.33}/\alpha^{0.57}
\]

\[
\rho \sim V_i/\alpha
\]

- Fast-ignition implosion
 - low-velocity \(V_i \)
 - low-adiabat \(\alpha \)
 - large mass

\[
E_{ig}^* \text{(kJ)} \approx 11 \left[\frac{400}{\rho \text{ (g/cc)}} \right]^{1.95}
\]

\[
r_{\text{beam}}^* \text{(\(\mu \text{m} \))} = 15 \left[\frac{400}{\rho \text{ (g/cc)}} \right]^{0.95}
\]

High \(\rho \) is required for fast ignition

Upper bound of the density

*S. Atzeni, Phys. Plasmas 6, 3316 (1999).
Low-adiabat implosions lead to high ρ and ρR with low velocities, large masses, and high gains

Implosion Characteristics
- Choose the lowest possible adiabat. Limitation to the minimum adiabat comes from the laser pulse length and the pulse contrast ratio; $\alpha = 0.7$ seems a reasonable value
- Choose stagnation density
- Find the implosion velocity from the density equation

Target Design
- Set $I \approx 10^{15}$ W/cm2
- Choose driver energy and corresponding laser power
- Find capsule outer radius from power and intensity
- Find final mass from kinetic energy
- Assuming a 20% ablated mass leads to an initial mass
- Initial mass and outer radius yield the inner radius
Optimized fast-ignition cryo targets are thick shells of wetted foam with an initial aspect ratio of ~ 2.

These targets have high areal densities and low IFAR

Low-adiabat implosions are driven by RX laser pulses.
The 750-kJ capsule yields a density >300 g/cc over a $\rho R > 2$ g/cm2

The hot-spot volume is $<8\%$ of the compressed volume.
Scaling laws for fast-ignition fuel assembly are derived and used to design high-density and high-areal-density implosions

- High-density and high-areal-density capsules are optimized for fast-ignition implosions.
- Density depends on adiabat and implosion velocity. It is independent of driver energy.
- Areal density depends on adiabat and driver energy, and depends weakly on implosion velocity.
- Hot-spot temperature depends only on the implosion velocity.
- Low-adiabat, low-implosion-velocity cryogenic implosions on OMEGA can achieve areal densities up to 0.78 g/cm².