Bubble Acceleration in the Ablative Rayleigh–Taylor Instability (RTI)

Vorticity is convected from the ablation front.

Vorticity accumulates in the bubble. The bubble accelerates.

J. Sanz and R. Betti
Fusion Science Center
Laboratory for Laser Energetics
University of Rochester

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
In the ablative RTI, the terminal bubble velocity is significantly larger than predicted by classical theory; ablation is nonlinearly destabilizing.

- The vorticity convected off the ablation front fills the rising bubble.
- The centrifugal force of the rotating flow in the vortex pushes the bubble to higher velocities.
- The terminal bubble velocity is approximately

\[
V_{\text{bubble}}^2 (\infty) \approx \sqrt{\frac{g}{3k} (1 - r_d)} + \frac{V_a^2}{r_d} \quad r_d = \frac{\rho_{\text{bubble}}}{\rho_{\text{dense}}}
\]
The single-mode ablative Rayleigh–Taylor instability is simulated for the NIF direct-drive point design using the code ART with a 210×4000 grid.

A weak vortex is used as initial perturbation.
Simulations show vorticity convection and accumulation.
A density pedestal forms inside the bubble and a new ablation front is established between the spikes.

$t = 2.8\text{ ns}$

![Graph showing temperature and density distributions with a focus on the density pedestal.](image)
The density in the bubble is the same as predicted by the linear theory* and a significant fraction of the dense target density.

\[\rho_{\text{bubble}} \approx (0.1 \ kL_m)^{2/5} \rho_{\text{dense}} \]

\[\rho_{\text{dense}} \approx 4 \ \text{g/cc} \]

\[L_m \approx 0.18 \ \mu m \quad \lambda \approx 10 \ \mu m \]

\[\rho_{\text{bubble}}^{\text{linear}} \approx 0.66 \ \text{g/cc} \]

\[\rho_{\text{bubble}}^{\text{simulation}} \approx 0.65 \ \text{g/cc} \]

\[L_m = \text{the minimum density-gradient scale length} \]

\[k = \text{mode wave number} \]

A large vortex forms inside the bubble; the vortex generates a centrifugal force \((F_c) \) pushing on the bubble tip.

\[F_c \]

\[\omega \text{ (ns}^{-1}) \]

\[t = 2.8 \text{ ns} \]

\[40 \mu\text{m} \]

\[10 \mu\text{m} \]

\[\Omega \approx \omega/2 \]

\[R \approx \lambda/2 \]
The asymptotic bubble velocity is higher than the classical value due to the vorticity accumulated inside the bubble.

Centrifugal force and buoyancy force add up.

Centrifugal force:
\[\rho_{\text{bubble}} R \Omega^2 = \rho_{\text{bubble}} \frac{R \omega^2}{4} \]

Buoyancy force:
\[(\rho_{\text{dense}} - \rho_{\text{bubble}}) g \]

Bubble-velocity enhancement
\[V_{\text{bubble}}^{\text{vort}} = \sqrt{\frac{g}{3k} (1 - r_d) + r_d \frac{\omega^2}{4k^2}} \]

\[r_d = \frac{\rho_{\text{bubble}}}{\rho_{\text{dense}}} \]
After a first plateau starting when $\eta \approx 0.1\lambda$, the vorticity in the bubble increases; saturation occurs when $\omega \approx 2\,kV_a/r_d$

\[
\hat{\eta} = \frac{\eta}{0.1\lambda} = \frac{0.5(y_{\text{bubble}} - y_{\text{spike}})}{0.1\lambda}
\]

\[
\hat{\omega} = \frac{\omega}{kV_a/r_d}
\]
The bubble accelerates to final velocities well above the classical value and in agreement with the theory.

\[\frac{V_{\text{bubble}}}{V_{\text{class 2-D}}_b} \]

\[
\begin{align*}
\sqrt{\frac{g}{3k}(1 - r_d)} + r_d \frac{\omega(t)^2}{4k^2} - \sqrt{\frac{g}{3k}(1 - r_d) + \frac{V_a^2}{r_d}}
\end{align*}
\]
Summary/Conclusions

In the ablative RTI, the terminal bubble velocity is significantly larger than predicted by classical theory; ablation is nonlinearly destabilizing.

- The vorticity convected off the ablation front fills the rising bubble.
- The centrifugal force of the rotating flow in the vortex pushes the bubble to higher velocities.
- The terminal bubble velocity is approximately

\[V^{2-D}_{\text{bubble}}(\infty) \approx \sqrt{\frac{g}{3k}}(1 - r_d) + \frac{V_a^2}{r_d} \]

\[r_d = \frac{\rho_{\text{bubble}}}{\rho_{\text{dense}}} \]

- Will the ablation-induced vorticity affect the multimode bubble-front growth \(a gt^2 \)?
The bubble velocity is defined as the penetration velocity inside the overdense target.