Design of a Pair-Plasma Production Experiment for OMEGA EP

Bremsstrahlung, $E_\gamma > 2m_ec^2$

J. Myatt, A. V. Maximov, and R. W. Short
University of Rochester
Laboratory for Laser Energetics

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
Summary

OMEGA EP can potentially produce an electron–positron-pair plasma containing between 10^{11} and 10^{12} positrons.

- The calculations assume a total laser energy of 5 kJ and a 40% conversion efficiency of laser energy into hot electrons.

- For the generation of pairs, total available energy is more important than obtaining higher laser intensities (assuming a laser intensity of at least $\sim 10^{19}$ W/cm2).

- If the pairs can be confined to a volume of $\sim 10^{-4}$ cm3, the first-ever pair plasma will be produced in the laboratory.

- Flexibility of having two beams could help confine the pairs.
Pair creation due to the Trident process can be estimated since the cross section is well known

- Of the two mechanisms that are important for OMEGA EP parameters, the Trident process is dominant for targets thinner than a few hundred microns.
 - “Trident” process: $e^- + Z \rightarrow e^- + Z + e^+ + e^-$

- Probability of positron production (per electron) is calculated to be between $W_+ \simeq (10^{-4}$ to $10^{-3})$ [Gryaznykh et al. JETP Lett. (1998)].
 - assuming MeV electron temperatures
 - all electrons stop in the target
 - refluxing of hot electrons from sheath fields assures this
For targets less than \(\sim 1 \) mm in size and for laser energies of more than few hundred joules, essentially all of the hot electrons reflux

- A large target is not required for high yield.
For small targets, the Bethe–Heitler process is less important than Trident

- For Au targets ($Z = 79$) greater than $\sim 100 \mu m$ thick, this process becomes competitive with Trident:

$$e^- + Z \rightarrow e^- + Z + \gamma, \quad \gamma + Z \rightarrow Z + e^- + e^+$$

- The bremsstrahlung efficiency is well known ($E_{\gamma} > 1.02$ MeV):

$$\frac{(dE/dx)_{\text{rad}}}{(dE/dx)_{\text{coll}}} \sim 10\%$$

- Pair production is the dominant attenuation mechanism for gamma photons at these energies.

- Most of this radiation escapes the target unless it is thick.

- For 1 MeV, γ rays in Au $\mu \rho = (0.1) (19.3) = 1.93 \text{ cm}^{-1}$.

- $\Delta I/I_0 = 1 - \exp [-x(\text{mm})/7.2] \sim 1\%$ at $x = 100 \mu m$
For the positrons to be considered a plasma, two conditions need to be met

- Many particles in a Debye sphere: \(\Lambda_+^{(1)} \equiv n_+ \lambda_{D+}^3 \gg 1 \)
- System must be larger than the Debye length: \(\Lambda_+^{(2)} = \rho_{\text{system}} / \lambda_{D+} \gg 1 \)
Positron expansion makes it difficult to obtain the required density of \(\gtrsim 10^{16} \text{ cm}^{-3} \)

- Unlike hot electrons, positrons do not reflux.

- Spherical expansion must be limited to a radius of 300 \(\mu \text{m} \),
 - free expansion at \(c \) for 1 ps
 - Debye length is similar to system size
 - \(\Lambda_{+}^{(2)} = 2.4 \left(N_{+} / 10^{11} \right)^{1/2} (1 \text{ MeV} / T_{+})^{1/2} (1 \text{ ps} / \tau_{p})^{1/2} \)

- Limit expansion to one dimension only.
 - system size \(\sim 100 \) Debye lengths
 - \(\Lambda_{+}^{(2)} = 86 \left(N_{+} / 10^{11} \right)^{1/2} (1 \text{ MeV} / T_{+})^{1/2} (\tau / 1 \text{ ps})^{1/2} \left(100 \mu \text{m} / r_{\text{conf}} \right) \)
 - magnetic field, ponderomotive force*

The flexibility of multiple EP beams can be utilized to magnetize a foil target.

- One EP beam interacts with suitable target.
- Other beam creates positrons in second target, which is immersed in the B-field created by the first beam.
- Expansion of positrons is influenced.
- Similar targets have been fielded.*

The first part of the scheme has been investigated with LSP indicating that MG magnetic field strengths can be obtained.
One-MG magnetic fields are attainable and would be sufficient to confine radial positron expansion to within a few hundred microns

- Positron synchrotron frequency \(\omega_{\text{Ce}} = \frac{eB}{\gamma mc} \)
 \[\omega_{\text{Ce}} = 1.76 \times 10^{13} \left(\frac{B}{1 \text{ MG}} \right) \left(\frac{1}{\gamma} \right) \text{ rads s}^{-1} \]

- Gyroradius \(r_{\text{Ce}} = \frac{\beta_{\perp} c}{\omega_{\text{Ce}}} \)
 \[r_{\text{Ce}} = 17 \left(\frac{1 \text{ MG}}{B} \right) (\gamma) \mu\text{m} \]

- From 1-D expansion on previous slide: \(\Lambda_{+}^{(2)} \sim 40 \)
 \[\text{even better if } v << c \]
LSP calculations confirm that an external axial magnetic field of 4 MG is sufficient to achieve the required positron density.

- An external magnetic field has been imposed in the **LSP** calculations.
- The positrons are emitted in a jet along the direction of the imposed field.
- Interesting dynamics are observed in the absence of an external magnetic field.
- This arises due to a self-generated azimuthal magnetic field.
Diagnosing the pair plasma provides some significant challenges

- The presence of positrons can be diagnosed by observing their annihilation radiation (back to back photons at 511 keV)
- Pair plasmas are “symmetric,” leading to a difference in the linear-mode structure compared to “asymmetric” e–i plasmas
- Cutoffs for x waves differ from e–i plasmas
- No Faraday rotation
- Unfortunately, collective waves have long wavelengths $>100 \, \mu$m
- The probe beam would need to be in the submillimeter range
Summary/Conclusions

OMEGA EP can potentially produce an electron–positron-pair plasma containing between 10^{11} and 10^{12} positrons.

- The calculations assume a total laser energy of 5 kJ and a 40% conversion efficiency of laser energy into hot electrons.

- For the generation of pairs, total available energy is more important than obtaining higher laser intensities (assuming a laser intensity of at least $\sim 10^{19}$ W/cm2).

- If the pairs can be confined to a volume of $\sim 10^{-4}$ cm3, the first-ever pair plasma will be produced in the laboratory.

- Flexibility of having two beams could help confine the pairs.