High-Pressure Equation-of-State Studies
Using Laser-Driven Decaying Shocks

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006

J. E. Miller
University of Rochester
Laboratory for Laser Energetics
Summary

Decaying-shock measurements have observed possible missing energetics in the Al$_2$O$_3$ SESAME model

- Decaying shocks are used to produce a wide range of conditions for EOS measurements on a single experiment.

- Simultaneous measurements of shock velocity, reflectivity, and radiance are made to relate shock temperature to wave properties.

- Measurements deviate around 10 Mbar from the current SESAME sapphire model.
Collaborators

T. R. Boehly and D. D. Meyerhofer
Laboratory for Laser Energetics
University of Rochester

P. Celliers, J. Eggert, and D. G. Hicks
Lawrence Livermore National Laboratory

A. Melchior
Nuclear Research Center–Negev, Beer-Sheva, Israel
The kinematic EOS of sapphire has been measured over many Mbar.
A previous study of the thermal properties of silica was used to identify phase transitions.

Near metalization, the shock-front reflectivity is characterized by a Drude-like behavior.

\[R = \frac{(n - n_{00})^2 + \kappa^2}{(n + n_{00})^2 + \kappa^2} \]

\[n + i\kappa = \sqrt{\varepsilon_B \left[1 - \frac{\omega_p (E_G)^2}{\omega^2} \right] \frac{1}{1 - i/\omega \tau(E_G, \gamma)}} \]
Simultaneous kinematic and thermal measurements are obtained with VISAR* and a two-channel SOP**

$$T_{GB} = \frac{T_0}{\ln[1 + (1 - R) \cdot A/I]}$$

*Velocity Interferometer System for Any Reflector
**Streaked Optical Pyrometer
Sapphire

Shock velocity, temperature, and reflectivity are simultaneously measured as the shock decays.

OMEGA drive $\sim 10^{14} \text{ W/cm}^2$
1-ns pulse
Sapphire

SESAME deviation at high pressures may indicate unaccounted for energetics.

Possible unaccounted for energetic sink at ~10 Mbar.
Decaying-shock measurements have observed possible missing energetics in the Al₂O₃ SESAME model.

- Decaying shocks are used to produce a wide range of conditions for EOS measurements on a single experiment.

- Simultaneous measurements of shock velocity, reflectivity, and radiance are made to relate shock temperature to wave properties.

- Measurements deviate around 10 Mbar from the current SESAME sapphire model.
Shock velocity, reflectivity, and self-emission are measured using time-resolved VISAR* and SOP**

* Velocity interferometer system for any reflector (designed and implemented by LLNL)
** Streaked optical pyrometer (designed and implemented by LANL, modified to current state by LLNL)
The SOP spectral response was absolutely calibrated to relate SOP output to brightness temperature. *Using the NIST-Traceable Standard OL-550*