Studies of Adiabat-Shaped Direct-Drive, Cryogenic-Target Implosions on OMEGA

Fluence (10^16 keV/keV) vs. Photon energy (keV)

Absorption related to ρR

- Experimental data
- LILAC
- LILAC, opacity = 0

D_2 cryogenic implosion

David D. Meyerhofer
Laboratory for Laser Energetics
ME and Physics Departments
University of Rochester

48th Annual Meeting of the
American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
High fuel areal densities are observed in implosions on OMEGA that are energy-scaled from NIF ignition designs.

- Cryogenic target layering has produced ice smoothness that meets NIF specifications:
 - <1-μm rms in all modes in β-layered DT capsules,
 - <2-μm rms in all modes in D$_2$ capsules with auxiliary heating.

- Areal densities in excess of 100 mg/cm2 are observed from x-ray and nuclear diagnostics.

- The Lawson criterion for these dense plasmas is $>7 \times 10^{20}$ s/m3 and the fusion parameter is in excess of 10^{20} s-keV/m3.
Collaborators

Laboratory for Laser Energetics
University of Rochester

R. Petrasso, J. A. Frenje, F. H. Seguin, C. K. Li
Massachusetts Institute for Technology

D. Shvarts
Negev
High-contrast pulse shapes are used to place the target on a low adiabat for high compression

- Cryogenic ice-layer smoothness is routinely below 2-μm rms.\(^1\)
- The picket shapes the target adiabat\(^2\)
- The peak intensity limits the core temperature for continuum measurements.

\(^{1}\text{See T. C. Sangster QT1.00001}\)
\(^{2}\text{K. Anderson and R. Betti, Phys. Plasmas 10, 4448 (2003).}\)
The neutron averaged areal density $\langle \rho R \rangle_n$ is greater than 100 mg/cm2 for cryogenic D$_2$ implosions.

Cold, dense fuel shell

Hot, low-density core

$\langle \rho R \rangle_n$ is greater than 100 mg/cm2 for cryogenic D$_2$ implosions.

$1. \ D + D \rightarrow ^3\text{He} \ (0.7 \text{ MeV}) + p$

$2. \ ^3\text{He} + D \rightarrow p \ (12.5–17.4 \text{ MeV}) + ^4\text{He}$

$\langle \rho R \rangle_n \sim 100 \text{ to } 110 \text{ mg/cm}^2$ over several lines-of-sight

• Low-energy tail suggests peak ρR approaches 200 mg/cm2

Further analysis is underway to infer a $\rho R(t)$ by convolving the neutron emission rate with the measured proton spectrum*

The core x-ray continuum is measured with a pinhole-array spectrometer

~200 monochromatic images with 50-μm pinholes

Array tilt spreads images along energy axis

Core emission is well separated from ablation-region emission and background
The peak areal density ρR_{peak} may be inferred by using core self emission to backlight the fuel shell.

Emitted x-ray spectrum is the product of a source term and an attenuation term.

- $I \propto e^{-E/T} \times e^{-\mu \rho R_{\text{shell}}}$

The fuel–shell attenuation is proportional to $\rho^2 R$.

1-D simulations can be used to estimate ρ and suggest the ρR_{peak} could be as high as 180 to 190 mg/cm2.

2-D simulations are expected shortly to confirm fuel density estimates.
The Lawson criterion can be estimated from the core size and calculated density

- The average density is $\sim 30 \text{g/cm}^3 \rightarrow n_e \sim 7 \times 10^{24} \text{cm}^{-3}$
- The confinement (disassembly) time is greater than 100 ps
- $n_e \tau > 7 \times 10^{20} \text{s/m}^3$
- at 200 eV, $n_e \tau T > 10^{20} \text{keV-s/m}^3$
The fusion-confinement parameter in cryogenic implosions on OMEGA is comparable to those achieved in Tokamak experiments.
Summary/Conclusions

High fuel areal densities are observed in implosions on OMEGA that are energy-scaled from NIF ignition designs.

- Cryogenic target layering has produced ice smoothness that meets NIF specifications:
 - <1-μm rms in all modes in β-layered DT capsules,
 - <2-μm rms in all modes in D₂ capsules with auxiliary heating.

- Areal densities in excess of 100 mg/cm² are observed from x-ray and nuclear diagnostics.

- The Lawson criterion for these dense plasmas is >7 × 10²⁰ s/m³ and the fusion parameter is in excess of 10²⁰ s-keV/m³.