Analysis of the Compressibility Experiments Performed on the OMEGA Laser System

S. X. Hu
University of Rochester
Laboratory for Laser Energetics

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
The compression experiments performed on OMEGA have been optimized using DRACO simulations.

- Preliminary foil-compression experiments with planar targets have been performed on the OMEGA Laser Facility.

- Good agreement between DRACO simulations and experiments has been obtained.

- Simulations have shown non-negligible 2-D effects in these experiments.

- 2-D effects will be reduced in our optimized compressibility experiments.
Collaborators

V. N. Goncharov, V. A. Smalyuk, J. P. Knauer, T. C. Sangster, I. V. Igumenshchev, J. A. Marozas, and P. B. Radha

Laboratory for Laser Energetics
University of Rochester
ICF designs rely on high compression of the target shell
Preliminary compression experiments have been conducted on the OMEGA Laser System.

The density profile of the compressed foil can be directly measured.
Two-dimensional DRACO simulations are required to analyze the experiments. 2-D effects are caused by the laser illumination from the target sides.
DRACO simulations show significant 2-D effects in the experiments.
Good agreement between simulations and experiments is obtained.

Instrumental resolution
- Spatial: \(\sim 15 \, \mu m \)
- Temporal: \(\sim 80 \, \text{ps} \)
High spatial and temporal resolution is needed to distinguish the compression difference.
2-D effects will be reduced in the new design of compressibility experiments

- T-shaped targets

- DRACO simulations predict much less 2-D effects for the new designed T-shaped targets.
Adiabatic compression in shaped pulses can be observed by improving the temporal and spatial resolution of instrument.

Better resolution is required: MTF \(\sim 5 \mu \text{m} \); \(\mu t \sim 40 \) ps.
The compression experiments performed on OMEGA have been optimized using DRACO simulations.

- Preliminary foil-compression experiments with planar targets have been performed on the OMEGA Laser Facility.
- Good agreement between DRACO simulations and experiments has been obtained.
- Simulations have shown non-negligible 2-D effects in these experiments.
- 2-D effects will be reduced in our optimized compressibility experiments.