Layering and Characterization of Cryogenic DT Targets for OMEGA

University of Rochester
Laboratory for Laser Energetics

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
Smooth DT-ice layers (<1-μm rms) are repeatedly produced for OMEGA cryogenic targets

- **DT targets β layer with rms < 1 μm**
 - start from single-seed crystal
 - layer slowly over a temperature range of 45 mK
 - reached the point where a significant portion of the bright-ring rms may be caused by perturbations on the outer surface, not the inner-ice surface

- **DT layers appear to be unchanged by exposure to the OMEGA chamber prior to implosion**
 - layer unchanged for \(t \leq 10 \text{ s} \) during exchange-gas vent
 - no melting is observed in images ~30 ms before shots
Growing an ice layer from a single-seed crystal is essential to forming a smooth layer.

Flash frozen – 8.4-\(\mu\)m rms

Formed from a single crystal – 0.47-\(\mu\)m rms in a single view

Supercooling leads to many ice crystals.

![Graphs showing mode versus \(P(\mu m^2)\) for different rms values.](image)
A protocol for forming a single-seed crystal has produced DT ice layers with roughness values between 0.6- and 1.5-μm rms.
A protocol for forming a single-seed crystal has produced DT ice layers with roughness values between 0.6- and 1.5-μm rms.
A protocol for forming a single-seed crystal has produced DT ice layers with roughness values between 0.6- and 1.5-\(\mu\)m rms.

The critical factor is the rate that heat is removed from the target, which depends upon the temperature gradient between the target and the layering sphere, and the time the target is at that temperature.
A protocol for forming a single-seed crystal has produced DT ice layers with roughness values between 0.6- and 1.5-μm rms.

The critical factor is the rate that heat is removed from the target, which depends upon the temperature gradient between the target and the layering sphere, and the time the target is at that temperature.
A protocol for forming a single-seed crystal has produced DT ice layers with roughness values between 0.6- and 1.5-μm rms.

The critical factor is the rate that heat is removed from the target, which depends upon the temperature gradient between the target and the layering sphere, and the time the target is at that temperature.
A protocol for forming a single-seed crystal has produced DT ice layers with roughness values between 0.6- and 1.5-\textmu m rms.

The critical factor is the rate that heat is removed from the target, which depends upon the temperature gradient between the target and the layering sphere, and the time the target is at that temperature.

Reproducibility of layering protocol is encouraging for layering opaque targets.
The presence of He in the gas void had little effect on the layer quality.

^{3}He accumulation: 11 Torr
$1.5-\mu\text{m rms}$

D:T:$^{3}\text{He} \cong 1:1:1/8$

^{3}He accumulation: 80 Torr
$1.3-\mu\text{m rms}$

D:T:$^{3}\text{He} \cong 1:1:1$
Four DT ice layers with an ice roughness $<1\mu m$ rms over the entire surface for all modes have been produced.

The outer-shell roughness may dominate the bright-ring rms in these targets.

- Ice-surface rms may actually be significantly less than apparent.
- Ray-trace studies are underway to separate outer- and inner-surface effects on the bright ring.
The quality of the ice layer at shot time is determined by the time the target is without sufficient He exchange gas.

- Before removing the shrouds to expose the target, the He exchange gas is vented from around the target.
 - ~ few seconds to clear He from target chamber
- This allows the ice to warm at a rate of 1 K/15 s and slump at a rate of ~1 μm/s after ~5 s.
Pre-shot images show no indication of DT layer slumping

Exposure: ~0.5 msec within 30 msec of shot time
Smooth DT-ice layers (<1-\(\mu\)m rms) are repeatedly produced for OMEGA cryogenic targets

- **DT targets** \(\beta\) layer with rms < 1 \(\mu\)m
 - start from single-seed crystal
 - layer slowly over a temperature range of 45 mK
 - reached the point where a significant portion of the bright-ring rms may be caused by perturbations on the outer surface, not the inner-ice surface

- **DT layers** appear to be unchanged by exposure to the OMEGA chamber prior to implosion
 - layer unchanged for \(t \leq 10\) s during exchange-gas vent
 - no melting is observed in images \(\sim 30\) ms before shots