Shock Ignition of Thermonuclear Fuel with High-Areal Density

$E_L = 400$ to 500 kJ

R. Betti
Fusion Science Center,
Laboratory for Laser Energetics
University of Rochester

48th Annual Meeting of the
American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
Optimal targets for shock ignition are thick shells driven on a low adiabat at low implosion velocities (and low IFAR ~20)

- A convergent shock launched by a spike in the laser intensity leads to an adiabatic compression of the hot spot and reduction of the energy required for ignition.

- The robustness of the SI scheme is measured by the size of the shock-launching-time ignition window.

- 2-D simulations indicate that shock ignition may survive the detrimental effects of laser imprinting at a relatively low driver energy (~400 to 500 kJ) leading to gains of ~50 to 80.

- Applications of SI to the NIF in following talk U02.00011 by L. J. Perkins

Significant gains are predicted with moderate driver energies.
Collaborators

K. S. Anderson, C. Zhou, and A. A. Solodov
Fusion Science Center, Laboratory for Laser Energetics
University of Rochester

Lawrence Livermore National Laboratory
High areal densities (ρR) and low-implosion velocities (V_i) lead to high-energy gains (assuming that ignition occurs)

$$G = \frac{E_{\text{fusion}}}{E_{\text{laser}}} \sim \frac{\theta}{V_i^{1.2}}$$

$$\theta = \frac{1}{1 + \frac{7}{\rho R}} = \text{burnup fraction}$$

- Higher $\rho R \rightarrow$ longer burn time
- Lower $V_i \rightarrow$ more fuel mass for the same kinetic/laser energy
The hot-spot ignition condition is given by the balance of alpha heating with energy losses, including expansion losses.

\[
\frac{\dot{E}_{hs}}{E_{hs}} = \frac{1}{\tau_{\alpha}} - \frac{1}{\tau_{\text{rad}}} - \frac{1}{\tau_{\exp}} > 0
\]

\[
1/\tau_{\alpha} \sim n_{hs}^2 \langle \sigma v \rangle / P_{hs} \quad \text{alpha heating}
\]

\[
1/\tau_{\text{rad}} \sim n_{hs}^2 \sqrt{T_{hs}} / P_{hs} \quad \text{radiation cooling}
\]

\[
1/\tau_{\exp} \sim \sqrt{\dot{R}_{hs}/R_{hs}} \quad \text{expansion}
\]

\[
M_s \dot{R}_{hs} = 4\pi P_{hs} R_{hs}^2 \quad \text{shell Newton’s law}
\]
For isobaric fuel assemblies, the ignition condition depends only on velocity and shell areal density.

\[
(p_s \Delta_s)^2 V^2 (T_{\text{keV}}^{\text{isob}} - 4.4) > \text{const}
\]

- \(V_{\text{min}}\) is the minimum velocity required to overcome radiative losses \(\sim 1.5 \times 10^7\) cm/s.

For \(V \gg V_{\text{min}}\)

\[
(p_s \Delta_s)^2 V^2 \left(\frac{V}{V_{\text{min}}} \right)^{1.4} - 1 > \text{const}
\]

\[
T_{\text{max}}^{\text{hot spot (keV)}} = 7 \left[\frac{V_i (\text{cm/s})}{3 \times 10^7} \right]^{1.4}
\]

Ignition requirements set a threshold for the shell areal density.
The ignition condition can be modified to include the effect of a non-isobaric fuel assembly

\[
\hat{\phi} \left(\rho_s \Delta_s \right)_{\text{iso}}^2 V^2 \left(\phi^{0.3} \left(\frac{V}{V_{\text{min}}} \right)^{1.4} - 1 \right) > \text{const}
\]

Shell areal density \(P_{\text{hs}} \) and implosion velocity \(V \)

Non-isobaric enhancement

\[
\hat{\phi} \equiv \frac{P_{\text{hs}}/R_{\text{hs}}}{P_{\text{iso}}/R_{\text{iso}}}
\]
The areal density depends on energy and adiabat.

\[
(\rho\Delta)_{\text{max}}^{\text{fit}} = \frac{1.2}{\alpha^{0.57}} \left(\frac{E_L \text{ (kJ)}}{100} \right)^{0.33} \left(\frac{V \text{ (cm/s)}}{3 \times 10^7} \right)^{0.1} \text{g/cm}^2
\]

C. Zhou, BO3.00003
The ignition threshold can be lowered in non-isobaric fuel assemblies.

\[E_{\text{ign}}^{\text{min}} = \text{const} \times \frac{\alpha^{1.8}}{\sqrt{5.4}} \frac{1}{\dot{\phi}^2} + E_{\text{non-isob}} \]

Recover Herrmann et al. scaling for \(\dot{\phi} = 1 \), \(E_{\text{non-isob}} = 0 \)

\[\dot{\phi}^2 \sim \left(\frac{P_{\text{hs}}/R_{\text{hs}}}{P_{\text{iso}}/R_{\text{iso}}} \right)^2 \sim \left(\frac{R_{\text{iso}}}{R_{\text{hs}}} \right)^{12} \]

For adiabatic compression of the hot spot

Large improvements for small reductions of the hot-spot radius.

Non-isobaric enhancement is achieved through a convergent shock; the ignitor shock is launched by a spike of the laser intensity.

\[E_L = 400 \text{ to } 500 \text{ kJ}, \quad V_i = 2.4 \times 10^7 \text{ cm/s}, \quad \alpha = 0.7 \text{ to } 1.0 \]

IFAR \approx 18

Minimum shock energy for ignition = 50 kJ
The shock resulting from the collision of the ignitor and return shock compresses the hot spot.
The shock-induced compression of the hot spot is adiabatic; the ignition condition is improved.

The shock compression is adiabatic

\[P_{\text{shock}} = P_{\text{no shock}} \left(\frac{R_{\text{no shock}}}{R_{\text{shock}}} \right)^5 \]

\[P_{\text{shock}} = 720 \text{ Gbar} \]

Non-isobaric enhancement

\[\phi^2 = 7 \]

Reduction of the energy required for ignition for a “free” shock
The robustness of the ignition is measured by the size of the shock-ignition window.
Summary/Conclusions

Optimal targets for shock ignition are thick shells driven on a low adiabat at low-implosion velocities (and low IFAR ~20)

- A convergent shock launched by a spike in the laser intensity leads to an adiabatic compression of the hot spot and reduction of the energy required for ignition.
- The robustness of the SI scheme is measured by the size of the shock-launching-time ignition window.
- 2-D simulations indicate that shock ignition may survive the detrimental effects of laser imprinting at a relatively low driver energy (~400 to 500 kJ) leading to gains of ~50 to 80.
- Applications of SI to the NIF in following talk U02.00011 by L. J. Perkins

Significant gains are predicted with moderate driver energies.
Hot electrons with energies $< 100 \text{ keV}$ slow down on the shell’s outer surface.