2-D Simulations of OMEGA Fast-Ignition Cone Targets

\[\rho R \sim 63 \text{ mg/cm}^2 \]

\(x (\mu \text{m}) \)

\(y (\mu \text{m}) = -200 \)

Density (g/cm\(^3\))

University of Rochester
Laboratory for Laser Energetics
Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics

48th Annual Meeting of the American Physical Society
Division of Plasma Physics
Philadelphia, PA
30 October–3 November 2006
Summary

Preliminary cone-in-shell simulations agree well with experiment

- 2-D cone-in-shell fuel-assembly simulations are being simulated using HYDRA*

- Simulated ρR's and convergence ratios are in agreement with experiment

Collaborators

University of Rochester
Laboratory for Laser Energetics

*Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics

M. M. Marinak

Lawrence Livermore National Laboratory
Fast ignition offers the potential of higher gains and lower driver energies.
The two viable fast-ignition concepts share fundamental issues: hot-electron production and transport to the core.
Cone-in-shell targets with plastic shells have been imploded on OMEGA.

Current *HYDRA* cone-in-shell simulations are simplified using a few assumptions

- Radiation transport not modeled
- No step in cone at outer-shell boundary
- Cone inner-surface boundary fixed
- Uniform laser illumination
An all-D\textsubscript{2} cryogenic capsule has been modeled using HYDRA

OMEGA-like capsule:
- Cone half angle = 45°
- No offset of cone from center of capsule

130-\textmu m D\textsubscript{2} ice, 23 kJ in 1-ns square pulse
Simulation results give a consistent picture of the hydrodynamic compression of the shell around the cone TC7634.

Simulation: 130-μm D_2 ice, 23 kJ in 1-ns square, peak compression

\[\rho R \sim 63 \text{ mg/cm}^2 \]

Experiment: 24-μm CH, 22 kJ in 1-ns square, peak compression

\[\rho R \sim 60 \text{ mg/cm}^2 \]

\[<\rho> \sim 15 \text{ g/cm}^3 \]
HYDRA simulations of 17° cone-in-shell plastic targets are in progress

Uniformly driven 24-μm CH capsule with cone tip offset = 40 μm

Density at 1.4 ns
Current and future work

• Work in progress
 – Adding step to cone
 – *DRACO* Eulerian and ALE

• Future work
 – Radiation transport
 – Include real beam geometry
Summary/Conclusions

Preliminary cone-in-shell simulations agree well with experiment

• 2-D cone-in-shell fuel-assembly simulations are being simulated using HYDRA

• Simulated ρR’s and convergence ratios are in agreement with experiment