Shock Fast Ignition of Thermonuclear Fuel with High Areal Density

C. Zhou and R. Betti
University of Rochester
Laboratory for Laser Energetics

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
• High density/areal-density fuel can be assembled through low-velocity, low-adiabat implosions.

• 1-D simulations show that such a fuel assembly can be ignited by a spherically convergent shock.

• Two designs are presented with 100-kJ and 500-kJ fuel assemblies ignited by a 60-kJ and 200-kJ shock yielding 1-D gains of ~60 and ~120 respectively.

• 2-D simulations are being performed to evaluate the target robustness to inner surface roughness and laser imprinting.

Summary

Shock ignition offers interesting prospects for high gains at a low direct-driver energy.
Low implosion velocity leads to small RT growth and high gain; however, slow targets are difficult to ignite with standard central ignition.

- Low velocity = high-gain G

$$G \approx \frac{73.4}{I_{15}^{0.25}} \left(\frac{3 \times 10^7}{V_i \text{ (cm/s)}} \right)^{1.25} \left(\frac{\theta}{0.2} \right)$$

$$\theta = \frac{1}{1 + 7/\rho r}$$

- Low velocity = low RT growth. Ne = number of RT e-foldings

$$Ne (kd = 1) \approx \frac{V_i}{3 \times 10^7} \left[\frac{6.7}{I_{15}^{2/15}} \alpha_{if}^{0.3} \left(\frac{\lambda_L}{0.35} \right)^{2/15} - \frac{0.5}{I_{15}^{1/3}} \left(\frac{0.35}{\lambda_L} \right)^{2/3} \right]$$

- Low velocity = large energy for ignition

E_{ign} is the energy required for ignition

$$E_{\text{ign}} \sim \alpha_{if}^{1.8} V_i^{-6} P^{-0.8}$$

R. Betti, GO1.07
A 100-kJ, RX-shaped pulse can assemble fuel with $\rho R = 1.6 \text{ g/cm}^2$ through a slow ($V_i = 2.5 \times 10^7 \text{ cm/s}$), low-adiabat implosion ($\alpha = 0.7$)

<table>
<thead>
<tr>
<th>Energy (kJ)</th>
<th>In-flight aspect ratio IFAR</th>
<th>Max. areal density (g/cm2)</th>
<th>Implosion velocity (cm/s)</th>
<th>Gain (not ignited)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29</td>
<td>1.6</td>
<td>2.5×10^7</td>
<td>1.7%</td>
</tr>
</tbody>
</table>
The slow implosion velocity leads to small Rayleigh–Taylor growth during the laser flattop.

- Results from RT postprocessor based on Haan–Goncharov models and OMEGA laser nonuniformities with 1-THz SSD.
A spherically convergent shock driven by a 60-kJ spike in the laser intensity can ignite the hot spot of the 100-kJ fuel assembly.

\[
\text{Energy gain} = 68 \\
(1-D \text{ LILAC simulation})
\]
The laser-driven shock collides with the return shock, generating a high-pressure reflected shock propagating to the hot spot.

The ignitor pulse drives an incoming shock that collides with the return shock inside the shell.

A high-pressure shock resulting from the collision continues to propagate to the central hot spot, leading to ignition.
The high-pressure shock heats the hot spot above the ignition threshold.
Ignition is sensitive to the ignitor-shock launch time

- 60-kJ shock-ignitor pulse
- 20-kJ shock-ignitor pulse

- 100 ps
- 250 ps

1-D gain vs. Ignitor-shock launch time (ps)
The ignitor and return shocks must be synchronized to collide in the region of peak density.
A 500-kJ. NIF-size fuel assembly is ignited by a 200-kJ ignitor shock to produce a gain of 116
Preliminary work on the effect of ice-surface roughness shows encouraging results with respect to design robustness.

Single mode \(\ell = 20, \ a(0) = 2 \ \mu m \n YOC = 1 \)

Multimode \(\ell = 2 \text{ to } 24, \ \sigma_{\text{rms}} = 2 \ \mu m \n YOC = 0.82 \)
High density/areal-density fuel can be assembled through low-velocity, low-adiabat implosions.

1-D simulations show that such a fuel assembly can be ignited by a spherically convergent shock.

Two designs are presented with 100-kJ and 500-kJ fuel assemblies ignited by a 60-kJ and 200-kJ shock yielding 1-D gains of \(\sim 60 \) and \(\sim 120 \) respectively.

2-D simulations are being performed to evaluate the target robustness to inner surface roughness and laser imprinting.