Numerical Calculations of Laser-Generated MeV Electrons and Characteristic X-Ray Production in Copper Foil Targets

J. Myatt
University of Rochester
Laboratory for Laser Energetics

Electron Density

Laser Spot

Normalized laser intensity

R (μm)

Z (μm)

47th Annual Meeting of the American Physical Society Division of Plasma Physics
Denver, CO
24–28 October 2005
Summary

A modified version of LSP* is able to correctly compute the characteristic K-shell emission from laser irradiated foil targets without the *ad hoc* introduction of hot electron refluxing.

- K_α photon production efficiencies have been computed for parameters relevant to recent Cu foil experiments† on the 100-TW and PW RAL systems for laser intensities in the range $I = 10^{18} - 10^{20}$ W/cm2.

- The computed yields depend strongly on the presence of large self-fields ($B \sim 10$ MG, $E \sim 10^7$ kV/cm) that create trapped and refluxing populations of hot electrons.

- Results compare favorably with the experiment in terms of the absolute yield and its dependence on laser intensity and target thickness.

Collaborators

University of Rochester
Laboratory for Laser Energetics

R. P. J. Town and L. A. Cottrill
Lawrence Livermore National Laboratory
Monte Carlo (MC) models can only be made to agree with the RAL data if we allow for “refluxing”

- For exponentially distributed electrons, the best fit occurs for an 8% conversion efficiency $\eta_{L\rightarrow e}$

![Graph showing laser intensity (W/cm²) vs. total energy in Kα/laser energy for different cases: 100 TW and PW RAL data, MC Model perfect refluxing, MC model no refluxing with 20 μm Cu foil.]

C. Stoeckl et al., Bull Am. Phys. Soc. 49 1004 (2004).
The LSP model automatically describes refluxing because it self-consistently solves for EM fields.

- Unlike MC, hybrid PIC includes the generation of sheath fields, anomalous stopping, resistive inhibition and collimation hot current.

- K-shell photon production efficiency is a result of the interplay between electron energy loss (dE/ds) and the energy dependence of the K-shell ionization cross section \(\sigma_k(E) \).

- The LSP plasma model has been extended by using a combination of the “collisional plasma” model and ITS routines.
 - collisional slowing down and scattering *
 - produce and transport x-ray photons

- Electrons are “promoted” from the background with Wilks scaling.†

*A. Solodov et al., QP1.138
LSP calculations exhibit complex hot electron trajectories including refluxing from the foil boundaries

- Magnetic field strength and sample particle trajectories in 20 μm Cu foil.

- Hot electrons flow radially outward along the target surface.
 \[U_{\text{drift}} = c \frac{E \times B}{B^2} \]

- Energetic electrons reflux off the sheath at the front and back surface.
Reasonable agreement is obtained between experimental K_α yield and LSP yield.

- Experimental points are a compilation of 100 TW and PW data where intensity is changed by varying beam energy (100 \rightarrow 500 J) and spot size for a ~1ps pulse.
- LSP collision model under-predicts stopping at high electron energy*.

*A. Solodov et al., QP1.138
K_α yield is insensitive to target size in both experiments* and LSP calculations

A modified version of LSP* is able to correctly compute the characteristic K-shell emission from laser irradiated foil targets without the ad hoc introduction of hot electron refluxing.

• K_α photon production efficiencies have been computed for parameters relevant to recent Cu foil experiments† on the 100-TW and PW RAL systems for laser intensities in the range $I = 10^{18} - 10^{20}$ W/cm2

• The computed yields depend strongly on the presence of large self-fields ($B \sim 10$ MG, $E \sim 10^7$ kV/cm) that create trapped and refluxing populations of hot electrons.

• Results compare favorably with the experiment in terms of the absolute yield and its dependence on laser intensity and target thickness.

The k-photon yield and its dependence on laser intensity can be estimated by a simple model*

- Determine production efficiency

\[\eta_{e \rightarrow k} = \frac{t_k N_k}{\eta_{L \rightarrow e} E_L}, \quad N_k = \frac{N_{k,obs}/F_{obs}}{N_e} \]

by integrating over path

\[N_k = N_e \int_0^{\infty} dE_0 f(E_0) \int_0^{S_{\text{max}}(E_0)} ds \omega_k \eta_{Cu} S_k \]

- Energy distribution \(f(E_0) \) is uncertain

 - e.g., \(f(e) \, dE = T \exp\left(-\frac{E}{T}\right) \, dE \), with \(T \) related to \(I \) with Wilks scaling: \(T \sim W_{\text{osc}} = 0.511 \left[(I = I_{18} \lambda^2 \mu m/1 \cdot 37)^{1/2} - 1 \right] \text{MeV} \)