Polar-Direct-Drive Experiments on OMEGA

F. J. Marshall
University of Rochester
Laboratory for Laser Energetics

Spoke-mounted Saturn target

\[t = 1.21 \text{ ns} \]

\[t = 1.46 \text{ ns} \]

\[t = 1.71 \text{ ns} \]

~15.3 kJ, 1-ns square

D-D neutron yield \((\times 10^{10})\)

Shell thickness (\(\mu\text{m}\))

- 60 beams TCC
- Saturn (repointed)
- Standard PDD
- Saturn (original)

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
Contributors

Summary

Polar-direct-drive (PDD) experiments on OMEGA have achieved up to 75% of symmetric yields using Saturn targets

- PDD is being tested on OMEGA with 40 beams arranged to emulate the 48 NIF indirect-drive beam configuration.

- X-ray radiography is used to measure the effects of beam pointing and Saturn ring size on the implosion symmetry.

- Implosions with better symmetry produce higher fusion yields.

- Future experiments will attempt to further optimize implosion symmetry and address target mount effects.

R. S. Craxton RO1.1
I. V. Igumenshchev RO1.3
S. Skupsky RO2.6
J. A. Marozas UI1.4
40 of the OMEGA beams are used to emulate the NIF 48 beam indirect-drive configuration.

- The OMEGA beams, in six rings from 21° to 59°, are used to emulate the NIF geometry.
- Additional OMEGA beams are used for x-ray backlighting.
Silk-mounted and spoke-mounted Saturn targets have been shot on OMEGA.

- **OMEGA shot 38500**
 - Time-integrated pinhole camera (2 to 5 keV)

- **OMEGA shot 37430**
 - X-ray pinhole camera image (2 to 5 keV)

- **OMEGA shot 39281**
 - X-ray pinhole camera image (2 to 5 keV)

- **“Silk” mount**

- **“Spoke” mount**
PDD implosions show nearly 1-D behavior until just before stagnation.

Standard PDD target implosion
OMEGA shot 34669
20-μm-thick CH shell, filled with 15-atm D₂

![Graph showing the relationship between radius (μm) and time (ns) with LILAC 1-D simulation lines and framed images marked with Imaging streak and Framed images labels.]
Core stagnation symmetry is affected by the direct-drive illumination configuration

X-ray pinhole camera images (2 to 5 keV)

60 beam implosion

<table>
<thead>
<tr>
<th>PDD 40 beam implosions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard target</td>
</tr>
<tr>
<td>Saturn target</td>
</tr>
</tbody>
</table>

OMEGA shot 37419
15.8 kJ, \(Y_n = 6.9 \times 10^{10} \)

OMEGA shot 37427
15.2 kJ, \(Y_n = 2.1 \times 10^{10} \)

OMEGA shot 39285
15.6 kJ, \(Y_n = 5.9 \times 10^{10} \)

865 \(\mu \text{m} \)

Ring shadow
The radiographs are fit with ideal Legendre modes to determine the deviations from spherical symmetry.

Standard PDD implosion of D$_2$(15)CH[20] target
OMEGA shot 38502

<table>
<thead>
<tr>
<th>Pointing</th>
<th>Ring</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>90 µm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>120 µm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>120 µm</td>
</tr>
</tbody>
</table>
Different beam pointing results in a different modal structure, as seen by the framing cameras.

Standard PDD target ℓ-mode pattern at $t = 1.7$ ns

Ring 1, 2, 3 offsets (\(\mu\)m)
37427 \ldots (90, 180, 180)
38502 \ldots (90, 120, 120)
The symmetry of the imploding shell depends on beam pointing for Saturn targets as well.

<table>
<thead>
<tr>
<th>Rings 1, 2, 3 offsets ((\mu m))</th>
<th>(90, 120, 120)</th>
<th>(90, 150, 150)</th>
<th>(30, 60, 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot 38501</td>
<td>(t = 1.52) ns</td>
<td>(Y_n = 2.8 \times 10^{10})</td>
<td>(Y_n = 2.2 \times 10^{10})</td>
</tr>
<tr>
<td>Shot 38508</td>
<td>(t = 1.65) ns</td>
<td>(Y_n = 3.3 \times 10^{10})</td>
<td>(Y_n = 2.2 \times 10^{10})</td>
</tr>
<tr>
<td>Shot 38512</td>
<td>(t = 1.46) ns</td>
<td>(Y_n = 2.2 \times 10^{10})</td>
<td>(Y_n = 2.2 \times 10^{10})</td>
</tr>
</tbody>
</table>

Saturn ring
2.2-mm diam
0.3-mm thick
The best Saturn targets achieve fusion yields that are \(\sim 75\% \) of symmetrically irradiated targets.
Polar-direct-drive (PDD) experiments on OMEGA have achieved up to 75% of symmetric yields using Saturn targets.

- PDD is being tested on OMEGA with 40 beams arranged to emulate the 48 NIF indirect-drive beam configuration.

- X-ray radiography is used to measure the effects of beam pointing and Saturn ring size on the implosion symmetry.

- Implosions with better symmetry produce higher fusion yields.

- Future experiments will attempt to further optimize implosion symmetry and address target mount effects.