Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

G. Li and V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
Ponderomotive terms modify the heat flux in laser-induced plasmas

- The IMPACT code1 is used to study the effects of ponderomotive terms.
- Ponderomotive terms are important near the critical surface.
- Simulation results agree with the simplified heat-conduction model.2

2V. N. Goncharov, BO1.00001.
The electron density, electron temperature, and laser–electric field have sharp profiles near the critical surface.
Local theory* predicts the temperature and laser-field dependence of heat flux

\[q = nTV_T \lambda_e \left(\beta_T \nabla \ln T + \beta_E \frac{\nabla V_E^2}{V_T^2} \right) \]

\[\beta_T = -\frac{128}{3\pi} \frac{Z + 0.24}{Z + 4.20} \]

\[\beta_E = 17.31 Z \frac{Z^2 + 14.04 Z + 2.41}{Z^2 + 14.34 Z + 29.5} \]

Z—average ion number

The IMPACT code is used to study the ponderomotive effect*

\[f(v, r, t) = f_0(v, r, t) + f_1(v, r, t) \cdot \hat{v} \left(\hat{v} = \frac{v}{|v|} \right) \]

Electron–electron collision

\[\frac{\partial f_0}{\partial t} + \frac{v}{3} \nabla \cdot f_1 - \frac{1}{3mv^2} \frac{\partial}{\partial v} (v^2 E \cdot f_1) = J_{ee} + J_{IB} \]

Inverse Bremsstrahlung

\[\frac{\partial f_1}{\partial t} + v \nabla f_0 - \frac{eE}{\partial v} \frac{\partial f_0}{\partial v} - \frac{e}{m} B \times f_1 = -\nu_{ei} f_1 \]

Heat flux \[q = \frac{4\pi}{3} \int_0^\infty \frac{1}{2}mv^2 f_1(v, r, t) v^3 \, dv \]

Electric current \[j = -\frac{4\pi e}{3} \int_0^\infty f_1(v, r, t) v^3 \, dv \]

f_0 obtained by IMPACT codes is consistent with the analytical solutions

$\sim \exp(-v^{3.4})$

Self-similar $\sim \exp(-v^5)$

FP with J_{ee} (Maxwellian)

FP with J_{ee} and inverse bremsstrahlung term

FP with inverse bremsstrahlung term
Ponderomotive terms appear in the heat flux because of the electromagnetic field dependence in f_0.

\[f_0 \approx f_M \exp \left(\frac{v^2}{2v_T^2} \Phi_{12} \right) \]

\[q \sim \nabla f_0 \sim \nabla |E|^2 \]

\[\alpha = \frac{Zv_E^2}{v_T^2}, \quad v_E = \frac{eE}{m\omega_L} \]

\[f_M \exp \left(\frac{7\alpha}{225\sqrt{2\pi}} \frac{v^5}{v_T^5} \right) \]

Ponderomotive terms modify the heat-flux profiles near the critical surface.

\[\nabla n_e \neq 0, \nabla T_e = \nabla |E| = 0 \quad \text{Theoretical result} \]

\[\nabla T_e \neq 0, \nabla n_e = \nabla |E| = 0 \]

\[\nabla |E| \neq 0, \nabla n_e = \nabla T_e = 0 \]
The simplified heat flux model* is consistent with the results of the Fokker–Planck simulation.

- **FP simulation**
 \[q = \frac{4\pi}{3} \int_0^\infty \frac{1}{2} m v^2 f_1(v, r, t) v^3 dv \]

- **Simplified heat-flux model**
 \[q = -\frac{m}{2} \int_0^1 y \int_0^\infty v^5 dv \int_{-\infty}^\infty dx \frac{3}{2} \sqrt{1 - \xi} \frac{eE_0}{T} f_0 - \frac{x}{\lambda} \]

 \[+ \frac{m}{2} \int_0^1 y \int_0^\infty v^5 dv \left(\int_x^\infty dx' \frac{3}{2} \sqrt{1 - \xi} \frac{f_0}{\lambda} - \int_{-\infty}^x dx' \frac{3}{2} \sqrt{1 - \xi} \frac{f_0}{\lambda} \right) \]

*V. N. Goncharov, BO1.00001
Summary/Conclusions

Ponderomotive terms modify the heat flux in laser-induced plasmas

- The IMPACT code1 is used to study the effects of ponderomotive terms.
- Ponderomotive terms are important near the critical surface.
- Simulation results agree with the simplified heat-conduction model.2

2V. N. Goncharov, BO1.00001