Simulation of Polar-Direct-Drive Saturn Implosions on OMEGA

Saturn target

Simulated density distribution, $t = 1$ ns

I. V. Igumenshchev et al.
University of Rochester
Laboratory for Laser Energetics

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
Summary

Simulations of OMEGA Saturn PDD implosions are in good agreement with experimental data

- An Eulerian hydro option has been developed and implemented into DRACO.
- Laser ray refraction in the target corona has been accurately calculated using DRACO full 3-D ray trace.
- Different optimization techniques for PDD implosions have been examined using Eulerian DRACO simulations.
- Simulation results have been compared and show good agreement with experimental neutron yields and observed x-ray images of OMEGA PDD implosions.
Collaborators

University of Rochester
Laboratory for Laser Energetics
In the polar-direct-drive designs, laser beams are repointed toward the equator.

Beam profile: \(I(r) \propto \exp \left[-(r/\delta)^n \right] \), \(n = 2.2 \sim 4.0 \)

PDD concepts are being tested on OMEGA.
Eulerian hydro is required to simulate plasma flow between ring and target

- The complexity of the flow makes it difficult to use ALE hydrodynamics.
- An Eulerian hydro option has been developed and integrated into *DRACO*.
 - Godunov-type hydro scheme
 - piecewise parabolic interpolation
 - moving spherical numerical grid

OMEGA Saturn design

- 40-beam 15-kJ drive
- 1-ns square pulse
Full 3-D laser ray trace has been used in simulations to accurately calculate the effects of ray refraction on laser deposition uniformity.

- Beam pointing and ray refraction provide nearly uniform irradiation of Saturn target.
- Caustics in the laser field near the equator are the result of the refraction of beam 3 (59°, 180 μm).
- Influence of caustics is insignificant in this implosion.

Plasma self-emission effects were self-consistently included using DRACO radiation transport.
Simulations show in detail the formation of bow shock during Saturn target implosion.
Simulations show in detail the formation of bow shock during Saturn target implosion.
Comparison of PDD implosion simulations with and without the ring show improvement in target uniformity.

Beginning formation of hot spot, $t = 1.85$ ns
DRACO simulations recover the observed relative degradation of neutron yield between PDD implosions with and without the ring.

PDD neutron yield (Y_N) relative to symmetric implosions

<table>
<thead>
<tr>
<th>Target type</th>
<th>Observed range</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturn</td>
<td>0.64 to 0.76</td>
<td>0.59</td>
</tr>
<tr>
<td>Saturn pointing without ring</td>
<td>0.31 to 0.41</td>
<td>0.34</td>
</tr>
</tbody>
</table>
DRACO/SPECT3D images clearly reproduce the target shape and size when compared with OMEGA images.

Saturn pointing without ring
Shot 38502

Saturn
Shot 39281

Reduction of the equatorial perturbation

OMEGA

DRACO/SPECT 3-D

$t = 1.68 \text{ ns}$

$t = 1.7 \text{ ns}$

$t = 1.71 \text{ ns}$

$t = 1.7 \text{ ns}$

$200 \mu\text{m}$
Summary/Conclusions

Simulations of OMEGA Saturn PDD implosions are in good agreement with experimental data

- An Eulerian hydro option has been developed and implemented into *DRACO*.

- Laser ray refraction in the target corona has been accurately calculated using *DRACO* full 3-D ray trace.

- Different optimization techniques for PDD implosions have been examined using Eulerian *DRACO* simulations.

- Simulation results have been compared and show good agreement with experimental neutron yields and observed x-ray images of OMEGA PDD implosions.