Effects of Perturbed Picket Pulses in Adiabat-Shaped Direct-Drive Implosion Experiments

R. Epstein et al.
University of Rochester
Laboratory for Laser Energetics

Picket pulse intensity, 180 ps FWHM
30-ps-rms picket scatter

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
Summary

Beam-to-beam picket mistiming within NIF specifications does not compromise performance in adiabat-shaped implosions

- Beam-to-beam picket mistiming appears as nonuniform picket broadening and power imbalance.
- NIF picket mistiming does not affect adiabat shaping within the fuel.
- Power-imbalance-imposed picket mistiming does not contribute significantly to the overall uniformity budget.
Collaborators

T. J. B. Collins, J. A. Delettrez, V. N. Goncharov,
J. P. Knauer, J. A. Marozas, P. W. McKenty,
P. B. Radha, and V. A. Smalyuk

University of Rochester
Laboratory for Laser Energetics
The NIF direct-drive target design employs adiabat shaping* to enhance hydrodynamic stability.

- $t = 0$ Picket creates a strong shock
- $t = t_p$ Rarefaction wave (RW) launched
- $t = t_{RW}$ RW meets the shock
- $t > t_{RW}$ Shock weakens in time

Picket-timing scatter produces low-order intensity nonuniformity on target

Harmonic amplitudes
- shown for \(\cos(\ell \theta) \)
- terms of orders
 \(\ell = 1\text{–}12 \)

- Picket pulse, 180-ps FWHM
- 48 quads, \(\sigma_{\text{rms}} = 30\text{-ps}^* \) scatter
- \(\delta t_o \approx \frac{\sigma_{\text{rms}}}{\sqrt{n_{\text{beam}}/5}} \approx 10\text{ps} \)

O. S. Jones et al., SPIE, 3492 49 (1998).
Shell adiabat perturbations due to beam mistiming are expected to be small

- The picket width t_p varies over the target surface by δt_p.

$$t_p \approx \left(t_{p0}^2 + \sigma_{rms}^2 \right)^{1/2} \pm \delta t_p$$

$$\frac{\delta t_p}{t_p} \approx \frac{1}{2(n_{beam}/5)} \left(\frac{\sigma_{rms}}{t_p} \right)^2 \approx \frac{0.8 \text{ ps}}{t_p} \approx 0.009$$

- A decaying-shock model* describes the resulting adiabat variations.

$$\frac{\delta \alpha_{abl}}{\alpha_{abl}} \approx \frac{2}{7} \frac{\delta t_p}{t_p} \approx 0.0025$$

$$\frac{\delta V_a}{V_a} \approx \frac{5}{21} \frac{\delta t_p}{t_p} \approx 0.0021$$

$$\frac{\delta \alpha_{in}}{\alpha_{in}} \approx 0.007 \frac{\delta t_p}{t_p} \approx 0$$

Ignition conditions are attained in simulated direct drive with NIF-spec 30-ps-rms* picket scatter

End of the acceleration phase
\(t = 8.8 \text{ ns} \)

Onset of ignition
\(t = 9.5 \text{ ns} \)

\(T_i \) contours in keV

*O. S. Jones et al., SPIE, 3492 49 (1998).
Scaling gain with $\bar{\sigma}$ allows the formation of a global nonuniformity budget for the direct-drive point design*

Current specifications

- On-target power imbalance (2% rms): $\bar{\sigma} = 0.85 \, \mu m$
- Inner-surface roughness (1-\mu m rms): $\bar{\sigma} = 0.61 \, \mu m$
- Applied SSD bandwidth (2 color cycle \times 1THz): $\bar{\sigma} = 0.50 \, \mu m$
- Outer-surface roughness (80 nm): $\bar{\sigma} = 0.15 \, \mu m$

\[\bar{\sigma}^2 = 0.06 \quad \sigma_{l}^2 \leq 10^+ \quad \sigma_{l}^2 > 10 \]

Power imbalance due to picket mistiming does not contribute significantly to the overall uniformity budget.

\[\text{Gain} \]

![Graph showing sum-in-quadrature vs. } \overline{\sigma} (\mu m)\]

<table>
<thead>
<tr>
<th>Picket scatter rms (ps)</th>
<th>(\overline{\sigma} (\mu m))</th>
<th>(\frac{\delta \overline{\sigma}}{\overline{\sigma}})</th>
<th>Scaled gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>30*</td>
<td>0.43</td>
<td>6.6%</td>
<td>34</td>
</tr>
<tr>
<td>45</td>
<td>0.48</td>
<td>8.2%</td>
<td>33</td>
</tr>
</tbody>
</table>

*NIF standard specification
Summary/Conclusions

Beam-to-beam picket mistiming within NIF specifications does not compromise performance in adiabat-shaped implosions

- Beam-to-beam picket mistiming appears as nonuniform picket broadening and power imbalance.
- NIF picket mistiming does not affect adiabat shaping within the fuel.
- Power-imbalance-imposed picket mistiming does not contribute significantly to the overall uniformity budget.