Shock-Timing Experiments in Planar Targets

T. R. Boehly
University of Rochester
Laboratory for Laser Energetics

VISAR shot 32213

Shock coalescence
Shock breakout

Distance (μm)

Time (ns)

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
Summary

We are measuring shock timing to the accuracies required for ICF ignition

• Multiple shock waves condition ICF capsules before implosion; accurate timing of these shocks is critical to target performance.

• The OMEGA laser is used to develop shock-timing techniques for OMEGA experiments and the National Ignition Campaign.

• In experiments with multiple shocks in CH and cryogenic deuterium targets we measure
 – shock velocities to 3% and
 – shock coalescence and breakout times with better than < 50 ps accuracy.

• These events produce unambiguous features in the data that can be resolved with accuracies that exceed the requirements for ignition targets.
Collaborators

J. E. Miller, W. Theobald, T. J. B. Collins, I. V. Igumenshev, R. S. Craxton, and D. D. Meyerhofer
University of Rochester
Laboratory for Laser Energetics

D. G. Hicks, P. M. Celliers, J. Eggert, G. W. Collins, D. Munro, and J. Edwards
Lawrence Livermore National Laboratory

R. E. Olson, G. A. Rochau, and R. J. Leeper
Sandia National Laboratory
Indirect-drive ignition capsules use four shocks to achieve ignition

- First three shocks ±50 ps
- Fourth shock ±100 ps
Direct-drive capsules use two shocks to achieve ignition.
We use proven diagnostics to observe and time laser-driven shockwaves.

- Planar targets allow a study of shock timing in cryogenic D$_2$.
 - 1-D approximation is good for the initial shocks

- Optical diagnostics such as VISAR and self-emission detect shocks with the high accuracy needed for EOS studies.

- These will be used to provide shock velocity (to $<3\%$) and coalescence data (<50 ps) for the first three shocks.

- X-ray radiography will be required to measure the timing and trajectory of the final shock.

- OMEGA experiments have demonstrated these techniques to observe multiple shocks.
Shock velocity and self-emission in laser-driven shock experiments are measured optically.

At ICF pressures, shocks are hot (> 5,000°K), steep, and overdense. They emit and reflect optical wavelengths.

*J. Ortel (LANL)
The velocity interferometer system for any reflector (VISAR) detects Doppler shifts to measure velocity.

Shockwave

Etalon: delay = $\tau \sim 15$ ps

Image plane

Streak camera

$\text{Velocity} \quad U_s$

Time

Velocity

U_s

Time

Space

Time

$\Delta \Phi(t) = 2\pi c \left[\int_0^t \frac{1}{\lambda(t')} \, dt' - \int_0^{t-\tau} \frac{1}{\lambda(t')} \, dt' \right]$

$= \frac{4\pi}{\lambda_0} n \int_{t-\tau}^t U_s(t') \, dt'$
Shock timing is studied using two pulses and CH targets.

Intensity: \(\sim 3 \times 10^{14} \text{ W/cm}^2, \ 90 \text{ ps} \)

Time (ns):

Intensity vs. Time (ns):

Distance (\(\mu \text{m} \)) vs. Time (ns):

Measure coalescence and breakout to \(\lesssim 30 \text{ ps} \)
1-D simulations, including a ray tracing routine, are in good agreement with double-shock experiments in CH.
Simultaneous VISAR and self-emission profiles provide corroborative data.
Simulations of shock coalescence in cryogenic D$_2$ agree well with self-emission measurements.

Coalescence Times in Cryogenic D$_2$

\[\Delta t = 125 \text{ ps} \pm 75 \text{ ps} \]

- ASBO shot 36457
- SOP shot 36457

- Cryogenic cell
- Liquid D$_2$
- CH ablator
- Shock
- Window

- Coalescence

Distance (\(\mu m\))

Time (ns)

Distance (\(\mu m\))

Time (ns)
Initial indirect-drive shock-timing experiments were performed on OMEGA
We have observed ionization “blanking” of windows in high-intensity experiments.
Ionization by x-rays can limit the diagnosis of shock velocity during the laser pulse.
A strong absorption and phase shifts are measured in x-ray ionized polystyrene and diamond.
Ionization by x-rays creates “free” electrons and in some materials optical transitions in the valence band.

\[n \approx \sqrt{n_r^2 - \frac{\omega_p^2}{\omega_0^2 + \nu^2}} \]

Conduction

Valence

Ionization: \(\omega_p \uparrow \)
\(\frac{dn}{dt} < 0 \rightarrow \) blue shift

Conduction

Valence

\(n \approx 1 + \frac{2p}{\pi} \int_0^\infty \frac{\omega' \alpha(\omega')}{\omega^2 - \omega'^2} d\omega' \)

\(> 2.33 \text{ eV} \)

Refractive index

1.59

E\(_\text{VISAR}\)

E\(_\text{Transition}\)

Holes in valence bands

No holes in valence band

Energy (eV)

1 2 3 4

\(\frac{dn}{dt} > 0 \)

*W. Theobald UO1.00006
Final Shock Timing

An x-ray radiograph of an ~4 Mb shock in polystyrene shows a spherical shock driven by an Al pusher.

- Drive pulse: 1 ns at $\sim 2 \times 10^{14}$ W/cm2

[Diagram showing an x-ray radiograph with labels for Sample, Shock, Detector, 40x magnification, Vacuum, CH, Aluminum, Al pusher, Shock front in CH, Unshocked CH.]
An x-ray radiograph of an ~4 Mb shock in polystyrene shows a spherical shock driven by an Al pusher.

- Drive pulse: 1 ns at ~2 x 10^{14} W/cm²

- Shock front in CH
- Unshocked CH
We are measuring shock timing to the accuracies required for ICF ignition

- Multiple shock waves condition ICF capsules before implosion; accurate timing of these shocks is critical to target performance.

- The OMEGA laser is used to develop shock-timing techniques for OMEGA experiments and the National Ignition Campaign.

- In experiments with multiple shocks in CH and cryogenic deuterium targets we measure
 - shock velocities to 3% and
 - shock coalescence and breakout times with better than < 50 ps accuracy.

- These events produce unambiguous features in the data that can be resolved with accuracies that exceed the requirements for ignition targets.