High-Density and High-ρR
Fuel Assembly for Fast Ignition

R. Betti
Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics
University of Rochester
Laboratory for Laser Energetics

47th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
24–28 October 2005
Significant progress has been made in the design of the fuel assembly for fast ignition using low-adiabat, low-velocity implosions.

Summary

- A high-yield fuel assembly has been designed; it requires a 750-kJ driver to produce:
 - $\rho R \approx 3 \text{ g/cm}^2$
 - $300 < \rho < 500 \text{ g/cc}$
 - hot-spot volume/total volume $\sim 5\%$ to 7%
 - estimated yield $\sim 120 \text{ MJ (if ignited)}$

- A similar cryo target scaled down to 25 kJ yields $\rho > 300 \text{ g/cc}$ and $\rho R \approx 0.8 \text{ g/cm}^2$.

- This method for assembling FI fuel will be first tested through 20-kJ plastic-shell implosions on OMEGA.
Ignition with fast ignition requires a fuel assembly with densities of \(500 > \rho > 300 \text{ g/cc}, \rho R > 0.4 \text{ g/cm}^2\) and small hot-spot volume.

\[E_{\text{ig}} (kJ) = 11 \left(\frac{400}{\rho (\text{g/cc})} \right)^{1.85} \]

\[r_{\text{beam}} (\mu m) = 15 \left(\frac{400}{\rho (\text{g/cc})} \right)^{0.95} \]

1 MeV e-stopping \(\rho_s \Delta_s > 0.4 \text{ g/cm}^2 \)

S. Atzeni, Phys. Plasmas 6, 3316 (1999).
High yields with fast ignition require $\rho > 300 \text{ g/cc}$, $\rho R \sim 3 \text{ g/cm}^2$, small hot-spot volume, and gains > 100

\[
\text{Gain} = \frac{\eta_h \cdot \theta E_f}{V_i^2 m_{ion}}
\]

\[
\text{Fraction burned} \rightarrow \theta \approx \frac{1}{1 + 7/\rho R}
\]

\[
\text{Hydro-efficiency} \rightarrow \eta_h = \frac{E_{\text{kinetic}}}{E_{\text{Laser}}}
\]
Scaling laws are derived to design targets for integrated FI experiments; low α, low-velocity implosions of massive shells yield small hot spots and large areal densities.

\[\frac{R_{\text{hot spot}}}{\Delta_{\text{stagnation shell}}} \approx 2.1 \left(\frac{V_i (\text{cm/s})}{3 \times 10^7} \right)^{0.96} \]

\[(\rho R)_{\text{max}} \approx \frac{1.3}{\alpha_{if}} \left[\frac{E_L (\text{kJ})}{100} \right]^{0.33} \text{g/cm}^2 \]

\[\rho_{\text{max}} \approx \frac{792}{\alpha_{if}} I_{15}^{0.13} \left[\frac{V_i (\text{cm/s})}{3 \times 10^7} \right] \text{g/cm}^3 \]

High-gain fuel assemblies for fast ignition can be designed using the scaling formulas

→ Low adiabats enhance densities and areal densities: minimum practical adiabat $\alpha = 0.7$ to 0.8

→ $\rho R(\alpha = 0.7) \approx 3 \Rightarrow E_{\text{Laser}} \approx 750 \text{ kJ}$

→ $\rho_{\text{max}}(\alpha = 0.7) \approx 600 \text{ g/cc} \Rightarrow V_i(\text{cm/s}) \approx 1.7 \cdot 10^7 \text{ cm/s}$

→ $V_i \approx 1.7 \cdot 10^7 \text{ cm/s} \Rightarrow R_h/\Delta_s \sim 1$

High-gain FI target: $E_L = 750 \text{ kJ}$, $\alpha = 0.7$, $V_i \approx 1.7 \cdot 10^7 \text{ cm/s}$

Estimated yield $\sim 120 \text{ MJ}$

In-flight aspect ratio (IFAR) = 18

A high-yield target has been designed for a 750-kJ laser driver.

<table>
<thead>
<tr>
<th>Energy</th>
<th>Implosion velocity</th>
<th>α</th>
<th>IFAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 kJ</td>
<td>1.7×10^7 cm/s</td>
<td>0.7</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum averaged density</th>
<th>Peak Density</th>
<th>Maximum ρR</th>
</tr>
</thead>
<tbody>
<tr>
<td>550 g/cc</td>
<td>670 g/cc</td>
<td>3 g/cm2</td>
</tr>
</tbody>
</table>
The 750-kJ capsule is driven by a relaxation laser pulse with a 22-ns main pulse and a contrast ratio of 150.

Can NIF assemble high-gain FI targets? Indirect-drive pulse is 18 ns with a contrast ratio of ~100
The slow implosion velocity leads to negligible Rayleigh–Taylor growth during the laser flat top.

Results from RT postprocessor based on Haan–Goncharov models and NIF laser nonuniformities with 1-THz SSD.

The 750-kJ capsule yields a hot-spot volume < 8% of the compressed volume and a quasi-isochoric density profile.
2-D hydro-simulations of ignition and burn of the 750-kJ target show energy yields >100 MJ

Energy yield ≈ 116 MJ

<table>
<thead>
<tr>
<th>Total beam energy (kJ)</th>
<th>12–20</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-beam radius (μm)</td>
<td>20</td>
</tr>
<tr>
<td>Electron energy (MeV)</td>
<td>2–3</td>
</tr>
</tbody>
</table>

J. A. Delettrez, this conference
Similar targets scaled down to 25 kJ can be assembled on OMEGA yielding high $\rho > 300 \text{ g/cc}$ and $\rho R \approx 0.8 \text{ g/cm}^2$.
This method for assembling FI fuel will be first tested on OMEGA with surrogate plastic-shell implosions.

<table>
<thead>
<tr>
<th>Energy (kJ)</th>
<th>Implosion velocity (μm/s)</th>
<th>Maximum ρR (5–15 atm)</th>
<th>Maximum ρ (5–15 atm)</th>
<th>Proton yield (5–15 atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.2</td>
<td>2.1 $\cdot 10^7$ cm/s</td>
<td>0.5–0.36 g/cm2</td>
<td>276–190 g/cc</td>
</tr>
</tbody>
</table>
Significant progress has been made in the design of the fuel assembly for fast ignition using low-adiabat, low-velocity implosions.